Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-25T23:03:55.623Z Has data issue: false hasContentIssue false

Transcriptomics of Cruznema velatum (Nematoda: Rhabditidae) with a redescription of the species

Published online by Cambridge University Press:  20 July 2023

F. Guo
Affiliation:
Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
D. Slos
Affiliation:
Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Merelbeke 9820, Belgium
H. Du
Affiliation:
Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
K. Li
Affiliation:
College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
H. Li*
Affiliation:
Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China College of Agriculture, Xinjiang Agricultural University, Urumqi 830052, China
X. Qing
Affiliation:
Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
*
Corresponding author: Hongmei Li; Email: lihm@njau.edu.cn

Abstract

Cruznema velatum isolated from soil in a chestnut orchard located at Guangdong province, China, is redescribed with morphology, molecular barcoding sequences, and transcriptome data. The morphological comparison for C. velatum and six other valid species is provided. Phylogeny analysis suggests genus Cruznema is monophyletic. The species is amphimix, can be cultured with Escherichia coli in 7–9 days from egg to egg-laying adult, and has a lifespan of 11 to 14 days at 20°C. The transcription data generated 45,366 unigenes; 29.9%, 31.3%, 24.8%, and 18.6% of unigenes were annotated in KOG, SwissProt, GO, and KEGG, respectively. Further gene function analysis demonstrated that C. velatum share the same riboflavin, lipoic acid, and vitamin B6 metabolic pathways with Caenorhabditis elegans and Pristionchus pacificus.

Type
Research Paper
Copyright
© Nanjing Agricultural University, 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abascal, F, Zardoya, R, Telford, MJ (2010). Translator X: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Research 38, Web Server issue, W7–W13. https://doi.org/10.1093/nar/gkq291CrossRefGoogle Scholar
Andrássy, I (1983). A taxonomic review of the suborder Rhabditina (Nematoda). Revue de Nématologie 5, 3950.Google Scholar
Bardgett, RD, van der Putten, WH (2014). Belowground biodiversity and ecosystem functioning. Nature 515, 7528, 505511. https://doi.org/10.1038/nature13855CrossRefGoogle ScholarPubMed
Blaxter, ML, De Ley, P, Garey, JR, Liu, LX, Scheldeman, P, Vierstraete, A, Vanfleteren, JR, Mackey, LY, Dorris, M, Frisse, LM, Vida, JT, Thomas, WK (1998). A molecular evolutionary framework for the phylum Nematoda. Nature 392, 6671, 7175. https://doi.org/10.1038/32160CrossRefGoogle ScholarPubMed
Brzeski, M (1989). Cruznema velatum sp. n. and observations on C. tripartitum (von Linstow) (Nematoda: Rhabditidae). Annales Zoologici 43, 7175.Google Scholar
Chen, SF, Zhou, YQ, Chen, YR, Gu, J (2018). fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, 17, i884i890. https://doi.org/10.1093/bioinformatics/bty560CrossRefGoogle ScholarPubMed
Colella, V, Bradbury, R, Traub, R (2021). Ancylostoma ceylanicum . Trends in Parasitology 37, 9, 844845 https://doi.org/10.1016/jpt202104013CrossRefGoogle ScholarPubMed
De Ley, P, De Ley, IT, Morris, K, Abebe, E, Mundo-Ocampo, M, Yoder, M, Heras, J, Waumann, D, Rocha-Olivares, A, Burr, AHJ, Baldwin, JG, Thomas, WK (2005). An integrated approach to fast and informative morphological vouchering of nematodes for applications in molecular barcoding. Philosophical Transactions of the Royal Society B: Biological Sciences. 360, 1462, 19451958. https://doi.org/10.1098/rstb.2005.1726CrossRefGoogle ScholarPubMed
De Ley, P, Félix, MA, Frisse, LM, Nadler, SA, Sternberg, PW, Thomas, WK (1999). Molecular and morphological characterization of two reproductively isolated species with mirror-image anatomy (Nematoda: Cephalobidae). Nematology 1, 6, 591612. https://lib.ugent.be/catalog/pug01:125417CrossRefGoogle Scholar
Dierckxsens, N, Mardulyn, P, Smits, G (2017). NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Research 45, 4, e18. https://doi.org/10.1093/nar/gkw955Google ScholarPubMed
Doucet, ME (1994). Variability on Cruznema tripartitum (Lansdown 1906) Zullini 1982 (Nemata: Rhabditida). Studies on Neotropical Fauna and Environment 29, 1, 3341. https://doi.org/10.1080/01650529409360914CrossRefGoogle Scholar
Du, H, Guo, F, Gao, Y, Wang, X, Qing, X, Li, H (2022). Complete mitochondrial genome of Cruznema tripartitum (Nematoda: Rhabditida) confirms highly conserved gene arrangement within family Rhabditidae. Journal of Nematology 54, 1, 110. https://doi.org/10.2478/jofnem-2022-0029CrossRefGoogle Scholar
Ferris, H, Venette, RC, Lau, SS (1997). Population energetics of bacterial-feeding nematodes: carbon and nitrogen budgets. Soil Biology and Biochemistry 29, 8, 11831194. https://doi.org/10.1016/S0038-0717(97)00035-7CrossRefGoogle Scholar
Fonseca, G, Derycke, S, Moens, T (2008). Integrative taxonomy in two free-living nematode species complexes. Biological Journal of the Linnean Society 94, 4, 737753. https://doi.org/10.1111/j.1095-8312.2008.01015.xCrossRefGoogle Scholar
Golden, TR, Melov, S (2007). Gene expression changes associated with aging in C. elegans. WormBook Feb 12, 112. https://doi.org/10.1895/wormbook.1.127.2CrossRefGoogle Scholar
Goffart, H (1935). Rhabditis gracilis n. sp.(Rhabditidae, Nematoda) als Bewohner faulenderKakaofrüchte. Zoologischer Anzeiger 109, 5/6, 134138.Google Scholar
Grabherr, MG, Haas, BJ, Yassour, M, Levin, JZ, Thompson, DA, Amit, I, Adiconis, X, Fan, L, Raychowdhury, R, Zeng, Q, Chen, Z, Mauceli, E, Hacohen, N, Gnirke, A, Rhind, N, di Palma, F, Birren, BW, Nusbaum, C, Lindblad-Toh, K, Friedman, N, Regev, A (2011). Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nature Biotechnology 29, 7, 644–552. https://doi.org/10.1038/nbt.1883CrossRefGoogle ScholarPubMed
Grewal, PS, Grewal, SK, Tan, L, Adams, BJ (2003). Parasitism of molluscs by nematodes: types of associations and evolutionary trends. Journal of Nematology 35, 2, 146156.Google ScholarPubMed
Grootaert, P, Maertens, D (1976). Cultivation and life cycle of Mononchus aquaticus. Nematologica 22, 2, 173181. https://doi.org/10.1163/187529276X00265CrossRefGoogle Scholar
Hertweck, M, Hoppe, T, Baumeister, R (2003). C. elegans, a model for aging with high-throughput capacity. Experimental Gerontology 38, 3, 345346. https://doi.org/10.1016/S0531-5565(02)00208-5CrossRefGoogle Scholar
Hunt, VL, Tsai, IJ, Coghlan, A, Reid, AJ, Holroyd, N, Foth, BJ, Tracey, A, Cotton, JA, Stanley, EJ, Beasley, H, Bennett, HM, Brooks, K, Harsha, B, Kajitani, R, Kulkarni, A, Harbecke, D, Nagayasu, E, Nichol, S, Ogura, Y, Quail, MA, Randle, N, Xia, D, Brattig, NW, Soblik, H, Ribeiro, DM, Sanchez-Flores, A, Hayashi, T, Itoh, T, Denver, DR, Grant, W, Stoltzfus, JD, Lok, JB, Murayama, H, Wastling, J, Streit, A, Kikuchi, T, Viney, M, Berriman, M (2016). The genomic basis of parasitism in the Strongyloides clade of nematodes. Nature Genetics 48, 3, 299307. https://doi.org/10.1038/ng.3495CrossRefGoogle ScholarPubMed
Jones, JT, Haegeman, A, Danchin, EG, Gaur, HS, Helder, J, Jones, MG, ikuchi, T, Manzanilla-López, R, Palomares-Rius, JE, Wesemael, WM, Perry, RN (2013). Top 10 plant-parasitic nematodes in molecular plant pathology. Molecular Plant Pathology 14, 9, 946961. https://doi.org/10.1111/mpp.12057CrossRefGoogle ScholarPubMed
Katoh, K, Standley, DM (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 4, 772780. https://doi.org/10.1093/molbev/mst010CrossRefGoogle ScholarPubMed
Kramer, JM, Johnson, JJ, Edgar, RS, Basch, C, Roberts, S (1988). The sqt-1 gene of C. elegans encodes a collagen critical for organismal morphogenesis. Cell 55, 4, 555565. https://doi.org/10.1016/0092-8674(88)90214-0CrossRefGoogle ScholarPubMed
Lau, SS, Fuller, ME, Ferris, H, Venette, RC, Scow, KM (1997). Development and testing of an assay for soil ecosystem health using the bacterial-feeding nematode Cruznema tripartitum. Ecotoxicology and Environmental Safety 36, 2, 133139. https://doi.org/10.1006/eesa.1996.1498CrossRefGoogle ScholarPubMed
Li, H, Handsaker, B, Wysoker, A, Fennell, T, Ruan, J, Homer, N, Marth, G, Abecasis, G, Durbin, R (2009). The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 16, 20782079. https://doi.org/10.1093/bioinformatics/btp352CrossRefGoogle ScholarPubMed
Maertens, D (1975). Observations on life cycle of Prionchulus punctatus (Cobb, 1917) and culture conditions. Biologische Jaarboek Dodonaea 43, 197218.Google Scholar
McGinnis, S, Madden, TL (2004). BLAST: at the core of a powerful and diverse set of sequence analysis tools. Nucleic Acids Research 32, Web Server issue, W20–W25. https://doi.org/10.1093/nar/gkh435CrossRefGoogle ScholarPubMed
Miller, MA, Pfeiffer, W, Schwartz, T (2010). Creating the CIPRES science gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE) LA, New Orleans, LA, USA, 14 November 2010, pp. 18. https://doi.org/10.1109/GCE.2010.5676129Google Scholar
Palomares-Rius, JE, Cantalapiedra-Navarrete, C, Castillo, P (2014). Cryptic species in plant-parasitic nematodes. Nematology, 16, 10, 11051118. https://doi.org/10.1163/15685411-00002831CrossRefGoogle Scholar
Qing, X, Decraemer, W, Claeys, M, Bert, W (2017). Molecular phylogeny of Malenchus and Filenchus (Nematoda: Tylenchidae). Zoologica Scripta 46, 5, 625636. https://doi.org/10.1111/zsc.12236CrossRefGoogle Scholar
Qing, X, Wang, M, Karssen, G, Bucki, P, Bert, W, Braun-Miyara, S (2020). PPNID: a reference database and molecular identification pipeline for plant-parasitic nematodes. Bioinformatics 36, 4, 10521056. https://doi.org/10.1093/bioinformatics/btz707CrossRefGoogle ScholarPubMed
Rambaut, A (2016). FigTree v143 [accessed 2021 September 11] Available from: http://treebioedacuk/software/figtree/Google Scholar
Reboredo, GR, Camino, NB (2000). Two new Rhabditida species (Nematoda: Rhabditidae) parasites of Cyclocephala signaticollis (Coleoptera: Scarabaeidae) in Argentina. Journal of Parasitology 86, 4, 819821. https://doi.org/10.1645/0022-3395(2000)086[0819:TNRSNR]2.0.CO;2CrossRefGoogle Scholar
Reboredo, GR, Camino, NB (1998). Two new species of nematodes (Rhabditida: Diplogasteridae and Rhabditidae) parasites of Gryllodes laplatae (Orthoptera: Gryllidae) in Argentina. Memorias do Instituto Oswaldo Cruz 93, 6, 763766. https://doi.org/10.1590/s0074-02761998000600013CrossRefGoogle Scholar
Ronquist, F, Teslenko, M, van der Mark, P, Ayres, DL, Darling, A, Höhna, S, Larget, B, Liu, L, Suchard, MA, Huelsenbeck, JP (2012). MrBayes 32: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 3, 539542. https://doi.org/10.1093/sysbio/sys029CrossRefGoogle ScholarPubMed
Sedlazeck, FJ, Rescheneder, P, von Haeseler, A (2013). NextGenMap: fast and accurate read mapping in highly polymorphic genomes. Bioinformatics 29, 21, 27902791. https://doi.org/10.1093/bioinformatics/btt468CrossRefGoogle ScholarPubMed
Singh, PR, Couvreur, M, Decraemer, W, Bert, W (2019). Survey of slug-parasitic nematodes in East and West Flanders Belgium and description of Angiostoma gandavensis n. sp. (Nematoda: Angiostomidae) from arionid slugs. Journal of Helminthology 94, e35. https://doi.org/10.1017/S0022149X19000105Google Scholar
Smythe, AB, Holovachov, O, Kocot, KM (2019). Improved phylogenomic sampling of free-living nematodes enhances resolution of higher-level nematode phylogeny. BMC Evolutionary Biology 19, 1, 115. https://doi.org/10.3389/fevo.2021.769565CrossRefGoogle ScholarPubMed
Sohlenius, B, Sandor, A (1987). Vertical distribution of nematodes in arable soil under grass (Festuca pratensis) and barley (Hordeum distichum). Biology and Fertility of Soils 3, 1–2, 1925. https://doi.org/10.1007/BF00260574Google Scholar
Sommer, RJ, McGaughran, A (2013). The nematode Pristionchus pacificus as a model system for integrative studies in evolutionary biology. Molecular Ecology 22, 9, 23802393. https://doi.org/10.1111/mec.12286CrossRefGoogle Scholar
Stamatakis, A, Hoover, P, Rougemont, J (2008). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57, 5, 758771. https://doi.org/10.1080/10635150802429642CrossRefGoogle ScholarPubMed
Sudhaus, W (1974). Zur systematik verbreitung ökologie und biologie neuer und wenig bekannter Rhabditiden (Nematoda)1 Teil. Zoologische Jahrbücher (Systematik) 101, 173212.Google Scholar
Sudhaus, W (1978). Systematik phylogenie und ökologie der holzbewohnenden nematoden-gruppe Rhabditis (Mesorhabditis) und das problem “geschlechtsbezogener” artdifferenzierung. Zoologische Jahrbücher (Systematik) 105, 399461.Google Scholar
Sultana, R, Pervez, R (2019). Description of Cruznema minimus sp. n. (Nematoda: Rhabditidae) and Acrobeloides insignis sp. n. (Nematoda: Cephalobidae) with a key to Cruznema species. Annals of Plant Protection Sciences 27, 3, 394399. https://doi.org/10.5958/0974-0163.2019.00087.9CrossRefGoogle Scholar
Tahseen, Q, Sultana, R, Khan, R, Hussain, A (2012). Description of two new and one known species of the closely related genera Cruznema Artigas, 1927 and Rhabpanus Massey, 1971 (Nematoda: Rhabditidae) with a discussion on their relationships. Nematology 14, 5, 555570. https://doi.org/10.1163/156854111X612720CrossRefGoogle Scholar
van Megen, H, van den Elsen, S, Holterman, M, Gerrit, K, Mooijman, P, Bongers, T, Holovachov, O, Bakker, J, Helder, J (2009). A phylogenetic tree of nematode based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology 11, 6, 927950. https://doi.org/10.1163/156854109X456862CrossRefGoogle Scholar
Viney, M (2017). How can we understand the genomic basis of nematode parasitism? Trends in Parasitology 33, 6, 444452. https://doi.org/10.1016/j.pt.2017.01.014CrossRefGoogle ScholarPubMed
Von Linstow, OFB (1906). Neue und bekannte helminthen. Zoologische Jahrbücher (Systematik) 24, 120.Google Scholar
Whitehead, AG, Hemming, JR (1965). A comparison of some quantitative methods of extracting small vermiform nematodes from soil. Annals of Applied Biology 55, 1, 2538.CrossRefGoogle Scholar
Zajac, AM, Garza, J (2020). Biology epidemiology and control of gastrointestinal nematodes of small ruminants. Veterinary Clinics of North America-food Animal Practice 36, 1, 7387. https://doi.org/10.1016/j.cvfa.2019.12.005CrossRefGoogle ScholarPubMed
Supplementary material: File

Guo et al. supplementary material

Tables S1-S2

Download Guo et al. supplementary material(File)
File 180.2 KB
Supplementary material: File

Guo et al. supplementary material

Figures S1-S7

Download Guo et al. supplementary material(File)
File 365.6 KB