Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T13:34:20.010Z Has data issue: false hasContentIssue false

Real-time PCR versus traditional and Nano-based ELISA in early detection of murine trichinellosis

Published online by Cambridge University Press:  16 August 2023

S. M. Mohammad
Affiliation:
Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Egypt
L. A. Hegazy
Affiliation:
Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Egypt
R. S. Abdel Hady
Affiliation:
Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Egypt
M. A. Salama
Affiliation:
Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Egypt
S. K. Hammad*
Affiliation:
Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Egypt
S. M. Ibrahim
Affiliation:
Department of Medical Parasitology, Faculty of Medicine, Zagazig University, Egypt
*
Corresponding author: S. K. Hammad; Email: Samar.kamel.2010@hotmail.com

Abstract

Trichinellosis is a serious foodborne zoonosis. It poses a serious risk to public health worldwide. Early serological diagnosis of trichinellosis is influenced by an immunological ‘silent’ phase following infection. This highlights the necessity for developing sensitive diagnostic approaches to be employed when antibodies cannot be detected. In this work, the validity of traditional ELISA, Nano-ELISA and real time polymerase chain reaction (PCR) were evaluated in early diagnosis of Trichinella spiralis. Swiss albino mice were orally infected with 100 and 300 muscle larvae/mouse. Mice were sacrificed 4, 6, 8, 10, 15, and 28 days post-infection (dpi). Blood samples were tested for circulating antigen by traditional ELISA and Nano-ELISA using anti-rabbit polyclonal IgG conjugated with AgNPs and for Rep gene by SYBR green real-time PCR. Rep gene detection by SYBR green real-time PCR could detect T. spiralis with 100% sensitivity in the mild infection group at 8 dpi, while in the severe infection group it reached 100% sensitivity at 4 dpi. Nano-ELISA could detect T. spiralis circulating antigen from 4 dpi in both mild and severe infection and reached 100% sensitivity at 8 dpi and 6 dpi in mild and severe infection, respectively. However, traditional ELISA could detect T. spiralis circulating antigen from 6 dpi and reached maximum sensitivity at 15 dpi in the mild infection group, while in the severe infection group detection began at 4 dpi and reached 100% sensitivity at 8 dpi. Nano-ELISA and real time PCR, using Rep gene, are useful tools for the detection of early T. spiralis infection even in its mild infection state.

Type
Research Paper
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ambrosi, A, Castaneda, MT, Killard, AJ, Smyth, MR, Alegret, S, Merkoçi, A (2007). Double-codified gold nano labels for enhanced immunoanalysis. Analytical Chemistry 79, 52325240. https://doi.org/10.1021/ac070357mCrossRefGoogle Scholar
Appleton, JA, Blum, LK, Gebreselassie, NG (2012). Nematoda: Trichinella. In Lamb, TJ (ed). Immunity to Parasitic Infection. Oxford: John Wiley & Sons, Ltd., 275285.CrossRefGoogle Scholar
Ashour, DS, Aboul Assad, IA, El-Kowrany, S, Abdel Ghaffar, AE (2018). Copro-diagnosis of early Trichinella spiralis infection in experimental animals. Acta Scientific Microbiology, 1, 2, 3238. https://doi.org/10.31080/ASMI.2018.01.0017CrossRefGoogle Scholar
Attia, RA, Mahmoud, AE, Othman, RM, Sayed, AA (2016). Application of polymerase chain reaction assay for early detection of cell free DNA in mice infected with the migratory larvae of Trichinella spiralis. Journal of Infection and Molecular Biology 4, 1, 915. https://doi.org/10.14737/journal.jimb/2016/4.1.9.15CrossRefGoogle Scholar
Azzazy, HM, Mansour, MM, Kazmierczak, SC (2007). From diagnostics to therapy: prospects of quantum dots. Clinical Biochemistry 40, 1314, 917–927. https://doi.org/10.1016/j.clinbiochem.2007.05.018CrossRefGoogle ScholarPubMed
Bai, X, Hu, X, Liu, X, Tang, B, Liu, M (2017). Current research of trichinellosis in China. Frontiers in Microbiology 8, 1472. https://doi.org/10.3389/fmicb.2017.01472CrossRefGoogle ScholarPubMed
Bauer, KA, Perez, KK, Forrest, GN, Goff, DA (2014). Review of rapid diagnostic tests used by antimicrobial stewardship programs. Clinical Infectious Diseases 59, Suppl 3, 134145. https://doi.org/10.1093/cid/ciu547CrossRefGoogle ScholarPubMed
Beyhan, YE, Taş Cengiz, Z (2017). Comparison of microscopy, ELISA, and real-time PCR for detection of Giardia intestinalis in human stool specimens. Turkish Journal of Medical Sciences 47, 4, 12951299. https://doi.org/10.3906/sag-1612-71CrossRefGoogle ScholarPubMed
Brice-Profeta, S, Arrio, MA, Tronc, E, Menguy, N, Letard, I, Cartier dit Moulin, C, Noguès, M, Chanéac, C, Jolivet, JP, Sainctavit, P (2005). Magnetic order in γ-Fe2O3 nanoparticles: a XMCD study. Journal of Magnetism and Magnetic Materials 288, 354365. https://doi.org/10.1016/j.jmmm.2004.09.120CrossRefGoogle Scholar
Caballero-Garcia, ML, Jimenez-Cardoso, E (2001). Early detection of Trichinella spiralis infection by the polymerase chain reaction in blood samples of experimentally infected mice. Parasite (Paris, France) 8, 2 Suppl, S229S231. https://doi.org/10.1051/parasite/200108s2229Google Scholar
Chu, KB, Kim, SS, Lee, SH, Lee, DH, Kim, AR, Quan, FS. (2016). Immune correlates of resistance to Trichinella spiralis reinfection in mice. The Korean Journal of Parasitology 54, 5, 637643. https://doi.org/10.3347/kjp.2016.54.5.637CrossRefGoogle ScholarPubMed
Cui, J, Liu, RD, Wang, L, Zhang, X, Jiang, P, Liu, MY, Wang, ZQ (2013). Proteomic analysis of surface proteins of Trichinella spiralis muscle larvae by two-dimensional gel electrophoresis and mass spectrometry. Parasites & Vectors 6, 355. https://doi.org/10.1186/1756-3305-6-355CrossRefGoogle ScholarPubMed
Cui, J, Wang, L, Sun, GG, Liu, LN, Zhang, SB, Liu, RD, Zhang, X, Jiang, P, Wang, ZQ (2015). Characterization of a Trichinella spiralis 31 kDa protein and its potential application for the serodiagnosis of trichinellosis. Acta Tropica 142, 5763. https://doi.org/10.1016/j.actatropica.2014.10.017CrossRefGoogle ScholarPubMed
Cuttell, GL, Corley, SW, Gray, CP, Vanderlinde, PB, Jackson, LA, Traub, RJ (2012). Real-time PCR as a surveillance tool for the detection of Trichinella infection in muscle samples from wildlife. Veterinary Parasitology 188, 34, 285–293. https://doi.org/10.1016/j.vetpar.2012.03.054CrossRefGoogle ScholarPubMed
DeLong, ER, Vernon, WB, Bollinger, RR (1985). Sensitivity and specificity of a monitoring test. Biometrics, 41, 4, 947958.CrossRefGoogle ScholarPubMed
Ding, J, Bai, X, Wang, XL, Wang, YF, Shi, HN, Rosenthal, B, Boireau, P, Wu, XP, Liu, MY, Liu, XL (2016). Developmental profile of select immune cells in mice infected with Trichinella spiralis during the intestinal phase. Veterinary Parasitology 231, 7782. https://doi.org/10.1016/j.vetpar.2016.07.019CrossRefGoogle ScholarPubMed
Ding, N, Zhao, H, Peng, W, He, Y, Zhou, Y, Yuan, L, Zhang, Y (2012). A simple colorimetric sensor based on anti-aggregation of gold nanoparticles for Hg2+ detection. Colloids and Surfaces A. Physicochemical and Engineering Aspects 395, 161167. https://doi.org/10.1016/j.colsurfa.2011.12.024CrossRefGoogle Scholar
Dvorožňáková, E, Hurníková, Z, Kołodziej Sobocińska, M (2010). Kinetics of specific humoral immune response of mice infected with low doses of Trichinella spiralis, T. britovi, and T. pseudospiralis larvae. Helminthologia 47, 3, 152157. https://doi.org/10.2478/s11687-010-0023-xCrossRefGoogle Scholar
Dvorožnáková, E, Kolodziej-Sobocinska, M, Hurníková, Z (2012). Trichinella spiralis reinfection: changes in cellular and humoral immune response in BALB/c mice. Helminthologia 49, 4, 201210. https://doi.org/10.2478/s11687-012-0039-5CrossRefGoogle Scholar
El-Shafey, OK, Afifi, AF, Oshiba, SF, Aly, IR, Lasheen, ME (2018). Evaluation of gold nanoparticles coated sandwich ELISA as innovative diagnosis for human bancroftian filariasis. Journal of the Egyptian Society of Parasitology 48, 2, 223232.CrossRefGoogle Scholar
Food and Agriculture Organization of the United Nations/World Health Organization (FAO/WHO) (2013). Expert Committee on Food Additives. Safety evaluation of certain food additives and contaminants (Vol. 68). Seventy-Seventh Report of the Joint FAO/WHO Expert Committee on Food Additives.World Health Organization.Google Scholar
Gamble, H, Pozio, E, Bruschi, F, Nöckler, K, Kapel, CM, Gajadhar, AA (2004). International commission on trichinellosis: recommendations on the use of serological tests for the detection of Trichinella infection in animals and man. Parasite 11, 313. https://doi.org/10.1051/parasite/20041113CrossRefGoogle ScholarPubMed
Gao, Y, Zhou, Y, Chandrawati, R (2019). Metal and metal oxide nanoparticles to enhance the performance of Enzyme-Linked Immunosorbent Assay (ELISA). ACS Applied Nano Materials 3, 1, 121. https://doi.org/10.1021/acsanm.9b02003CrossRefGoogle Scholar
Gillette, MA, Carr, SA (2013). Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nature Methods 10, 1, 2834. https://doi.org/10.1038/nmeth.2309CrossRefGoogle ScholarPubMed
Gomaa, MM (2020). Early diagnosis of experimental Trichinella spiralis infection by nano-based Enzyme-linked Immunosorbent Assay (Nano-based ELISA). Experimental Parasitology 212, 107867. https://doi.org/10.1016/j.exppara.2020.107867CrossRefGoogle ScholarPubMed
Gottstein, B, Pozio, E, Nöckler, K (2009). Epidemiology, diagnosis, treatment, and control of trichinellosis. Clinical Microbiology Reviews 22, 1, 127145. https://doi.org/10.1128/CMR.00026-08CrossRefGoogle ScholarPubMed
Guirgis, BS, Sáe-Cunha, C, Gomes, I, Cavadas, M, Silva, I, Doria, G, Blatch, GL, Baptista, PV, Pereira, E, Azzazy, HM, Mota, MM, Prudêncio, M, Franco, R (2012). Gold nanoparticle-based fluorescence immunoassay for malaria antigen detection. Analytical and Bioanalytical Chemistry 402, 3, 10191027. https://doi.org/10.1007/s00216-011-5489-yCrossRefGoogle ScholarPubMed
Guobadia, EE, Fagbemi, BO (1997). The isolation of Fasciola gigantica-specific antigens and their use in the serodiagnosis of fasciolosis in sheep by the detection of circulating antigens. Veterinary Parasitology 68, 3, 269282.CrossRefGoogle ScholarPubMed
Jia, CP, Zhong, XQ, Hua, B, Liu, MY, Jing, FX, Lou, XH, Yao, SH, Xiang, JQ, Jin, QH, Zhao, JL (2009). Nano-ELISA for highly sensitive protein detection. Biosensors and Bioelectronics 24, 9, 28362841. https://doi.org/10.1016/j.bios.2009.02.024CrossRefGoogle ScholarPubMed
Jing, F, Cui, J, Liu, R, Liu, L, Jiang, P, Wang, ZQ (2014). Detection of circulating antigens in serum samples of mice experimentally infected with Trichinella spiralis by a sandwich ELISA based on IgY. Helminthologia 51, 3, 181189. https://doi.org/10.2478/s11687-014-0227-6CrossRefGoogle Scholar
Kamel, M, El-Baz, H, Demerdash, Z, El-Karaksy, S, El-Gendy, N, Hassan, S, Salah, F, El-Moneem, E, Hendawy, M, Aly, I (2016). Nano-immunoassay for diagnosis of active schistosomal infection. World Journal of Medical Sciences 13, 1, 2737. https://doi.org/10.5829/idosi.wjms.2016.13.1.96189Google Scholar
Kent, UM (1999). Purification of antibodies using ammonium sulfate fractionation or gel filtration. In Javois, LC (ed) Immunocytochemical Methods and Protocols. Methods in Molecular Biology™, vol 115. Totowa, NJ: Humana Press.Google Scholar
Khalifa, MM, Abdel-Rahman, SM, Bakir, HY, Othman, RA, El-Mokhtar, MA (2020). Comparison of the diagnostic performance of microscopic examination, Copro-ELISA, and Copro-PCR in the diagnosis of Capillaria philippinensis infections. PloS One 15, 6, e0234746. https://doi.org/10.1371/journal.pone.0234746CrossRefGoogle ScholarPubMed
Khodadadi, A, Madani, R, Hoghooghi Rad, N, Atyabi, N (2021). Development of nano-ELISA method for serological diagnosis of toxoplasmosis in mice. Archives of Razi Institute 75, 4, 419426. https://doi.org/10.22092/ari.2018.123028Google ScholarPubMed
Kołodziej-Sobocińska, M, Dvoroznakova, E, Dzieman, E (2006). Trichinella spiralis: macrophage activity and antibody response in chronic murine infection. Experimental Parasitology 112, 1, 5262. https://doi.org/10.1016/j.exppara.2005.09.004CrossRefGoogle ScholarPubMed
Krivokapich, SJ, Prous, CLG, Gatti, GM, Arbusti, PA (2019). Assessment of mitochondrial and nuclear genes for molecular detection during early Trichinella spiralis infection. International Journal of Tropical Diseases 2, 3, 2:025. https://doi.org/10.23937/2643-461X/1710025Google Scholar
Lawrence, CE, Paterson, YY, Wright, SH, Knight, PA, Miller, HR (2004). Mouse mast cell protease-1 is required for the enteropathy induced by gastrointestinal helminth infection in the mouse. Gastroenterology 127, 1, 155165. https://doi.org/10.1053/j.gastro.2004.04.004CrossRefGoogle ScholarPubMed
Li, F, Wang, ZQ, Cui, J (2010). Early detection by polymerase chain reaction of migratory Trichinella spiralis larvae in blood of experimentally infected mice. Foodborne Pathogens and Disease 7, 8, 887892. https://doi.org/10.1089/fpd.2009.0472CrossRefGoogle ScholarPubMed
Liu, LN, Jing, FJ, Cui, J, Fu, GY, Wang, ZQ (2013). Detection of circulating antigen in serum of mice infected with Trichinella spiralis by an IgY-IgM mAb sandwich ELISA. Experimental Parasitology 133, 2, 150155. https://doi.org/10.1016/j.exppara.2012.11.001CrossRefGoogle ScholarPubMed
Liu, XL, Ren, HN, Shi, YL, Hu, CX, Song, YY, Duan, JY, Zhang, HP, Du, XR, Liu, RD, Jiang, P, Wang, ZQ, Cui, J (2017). Early detection of Trichinella spiralis DNA in the feces of experimentally infected mice by using PCR. Acta Tropica 166, 351355. https://doi.org/10.1016/j.actatropica.2016.10.021CrossRefGoogle ScholarPubMed
Makhsin, SR, Razak, KA, Noordin, R, Zakaria, ND, Chun, TS (2012). The effects of size and synthesis methods of gold nanoparticle-conjugated MαHIgG4 for use in an immunochromatographic strip test to detect brugian filariasis. Nanotechnology 23, 49, 495719. https://doi.org/10.1088/0957-4484/23/49/495719CrossRefGoogle Scholar
Mayer-Scholl, A, Pozio, E, Gayda, J, Thaben, N, Bahn, P, Nöckler, K (2017). Magnetic stirrer method for the detection of Trichinella larvae in muscle samples. Journal of Visualized Experiments 121, e55354. https://doi.org/10.3791/55354Google Scholar
McKinney, MM, Parkinson, A (1987). A simple, non-chromatographic procedure to purify immunoglobulins from serum and ascites fluid. Journal of Immunological Methods 96, 2, 271278. https://doi.org/10.1016/0022-1759(87)90324-3CrossRefGoogle ScholarPubMed
Mista, D, Piekarska, J, Houszka, M, Zawadzki, W, Gorczykowski, M (2010). The influence of orally administered short chain fatty acids on intestinal histopathological changes and intensity of Trichinella spiralis infection in mice. Veterinarni Medicina 55, 264274. https://doi.org/10.17221/2992-VETMEDCrossRefGoogle Scholar
Moharm, MI, El Enain, G, El-Deen, BW, El Aswad, MA, Hendawy, M, Aly, I (2014) Evaluation of nano-gold beads based-ELISA for detection of Giardia lamblia antigen in stool samples of infected patients. Middle-East Journal of Scientific Research 21, 12, 22642273. https://doi.org/10.5829/idosi.mejsr.2014.21.12.86132Google Scholar
Muller, PY, Janovjak, H, Miserez, AR, Dobbie, Z (2002). Processing of gene expression data generated by quantitative real-time RT-PCR. Biotechniques 32, 6, 13721379.Google ScholarPubMed
Murrell, KD (2016). The dynamics of Trichinella spiralis epidemiology: Out to pasture? Veterinary Parasitology 231, 9296. https://doi.org/10.1016/j.vetpar.2016.03.020CrossRefGoogle ScholarPubMed
Naser, ME, Younis, MS, Bayoumi, IR, Eraky, MA, Aly, NS, El Attar, REO (2017). Evaluation of nanogold-beads-based enzyme-linked immunosorbent assay for detection of Cryptosporidium antigen in stool samples of diarrheic patients. Benha Medical Journal 34, 8892.CrossRefGoogle Scholar
Ojodale, PI, Inabo, HI, Ella, EE, Okubanjo, OO (2021). Serological and molecular evaluation of migratory Trichinella spiralis larvae in blood of humans in Kaduna Metropolis, Nigeria. Fudma Journal of Sciences 4, 4, 281289. https://doi.org/10.33003/fjs-2020-0404-441CrossRefGoogle Scholar
Pozio, E (2007). World distribution of Trichinella spp. infections in animals and humans. Veterinary Parasitology 149, 12, 3–21. https://doi.org/10.1016/j.vetpar.2007.07.002CrossRefGoogle ScholarPubMed
Pozio, E (2015). Trichinella spp. imported with live animals and meat. Veterinary Parasitology 213, 12, 46–55. https://doi.org/10.1016/j.vetpar.2015.02.017CrossRefGoogle ScholarPubMed
Riddle, MS, DuPont, HL, Connor, BA (2016). ACG Clinical Guideline: Diagnosis, treatment, and prevention of acute diarrheal infections in adults. The American Journal of Gastroenterology 111, 5, 602622. https://doi.org/10.1038/ajg.2016.126CrossRefGoogle ScholarPubMed
Sadaow, L, Intapan, PM, Boonmars, T, Morakote, N, Maleewong, W (2013). Susceptibility of laboratory rodents to Trichinella papuae. The Korean Journal of Parasitology 51, 6, 629632. https://doi.org/10.3347/kjp.2013.51.6.629CrossRefGoogle ScholarPubMed
Sun, GG, Wang, ZQ, Liu, CY, Jiang, P, Liu, RD (2015a). Early serodiagnosis of trichinellosis by ELISA using excretory–secretory antigens of Trichinella spiralis adult worms. Parasites Vectors 8, 484491. https://doi.org/10.1186/s13071-015-1094-9CrossRefGoogle ScholarPubMed
Sun, GG, Liu, RD, Wang, ZQ, Jiang, P, Wang, L, Liu, XL, Liu, CY, Zhang, X, Cui, J (2015b). New diagnostic antigens for early trichinellosis: the excretory–secretory antigens of Trichinella spiralis intestinal infective larvae. Parasitology Research 114, 12, 46374644. https://doi.org/10.1007/s00436-015-4709-3CrossRefGoogle ScholarPubMed
Sun, GG, Song, YY, Jiang, P, Ren, HN, Yan, SW, Han, Y, Liu, RD, Zhang, X, Wang, ZQ, Ciu, J (2018). Characterization of a Trichinella spiralis putative serine protease. Study of its potential as sero-diagnostic tool. PLoS Neglected Tropical Diseases 12, 5, e0006485. https://doi.org/10.1371/journal.pntd.0006485CrossRefGoogle ScholarPubMed
Tajadini, M, Panjehpour, M, Javanmard, SH (2014). Comparison of SYBR green and taqman methods in quantitative real-time polymerase chain reaction analysis of four adenosine receptor subtypes. Advanced Biomedical Research 3, 85. https://doi.org/10.4103/2277-9175.127998CrossRefGoogle ScholarPubMed
Tijssen, P, Kurstak, E (1984). Highly efficient and simple methods for the preparation of peroxidase and active peroxidase-antibody conjugates for enzyme immunoassay. Analytical Biochemistry 136, 451457. https://doi.org/10.1016/0003-2697(84)90243-4CrossRefGoogle Scholar
Verma, R, Das, G, Manjunathachar, HV, Muwel, N (2018). Advances in diagnostics of parasitic diseases: current trends and future prospects. International Journal of Current Microbiology and Applied Sciences 7, 7, 32613277. https://doi.org/10.20546/ijcmas.2018.707.380CrossRefGoogle Scholar
Wakelin, D, Lloyd, M (1976). Immunity to primary and challenge infection of Trichinella spiralis in mice a re-examination of conventional parameters. Parasitology 72, 2, 173182. https://doi.org/10.1017/s0031182000048472CrossRefGoogle ScholarPubMed
Wang, H, Qiao, X, Chen, J, Ding, S (2005). Preparation of silver nanoparticles by chemical reduction method. Colloids and Surfaces A: Physicochemical and Engineering Aspects 256, 23, 111–115. https://doi.org/10.1016/j.colsurfa.2004.12.058CrossRefGoogle Scholar
Wang, Z, Hu, J, Jin, Y, Yao, X, Li, J (2006). In situ amplified chemiluminescent detection of DNA and immunoassay of IgG using special-shaped gold nanoparticles as label. Clinical Chemistry 52, 10, 19581961. https://doi.org/10.1373/clinchem.2006.071399CrossRefGoogle ScholarPubMed
Wang, ZQ, Fu, GY, Jing, FJ, Jin, J, Ren, HJ, Jiang, P, Cui, J (2012). Detection of Trichinella spiralis circulating antigens in serum of experimentally infected mice by an IgY-mAb sandwich ELISA. Foodborne Pathogens and Disease 9, 8, 727733. https://doi.org/10.1089/fpd.2012.1157CrossRefGoogle ScholarPubMed
Wang, ZQ, Shi, YL, Liu, RD, Jiang, P, Guan, YY, Chen, YD, Cui, J (2017a). New insights on serodiagnosis of trichinellosis during window period: early diagnostic antigens from Trichinella spiralis intestinal worms. Infectious Diseases of Poverty 6, 1, 41. https://doi.org/10.1186/s40249-017-0252-zCrossRefGoogle ScholarPubMed
Wang, ZQ, Liu, RD, Sun, GG, Song, YY, Jiang, P, Zhang, X, Cui, J (2017b). Proteomic analysis of Trichinella spiralis adult worm excretory-secretory proteins recognized by sera of patients with early trichinellosis. Frontiers in Microbiology 8, 986. https://doi.org/10.3389/fmicb.2017.00986CrossRefGoogle ScholarPubMed
Xu, DM, Wen, H, Wang, LA, Hu, CX, Qi, X, Sun, GG, Liu, RD, Wang, ZQ, Cui, J (2017). Identification of early diagnostic antigens in soluble proteins of Trichinella spiralis adult worms by Western blot. Tropical Biomedicine 34, 1, 191198.Google ScholarPubMed
Yang, S, Rothman, RE (2004). PCR-based diagnostics for infectious diseases: uses, limitations, and future applications in acute-care settings. The Lancet Infectious Diseases 4, 6, 337–48. https://doi.org/10.1016/S1473-3099(04)01044-8CrossRefGoogle ScholarPubMed
Yang, W, Li, LG, Liu, RD, Sun, GG, Liu, CY, Zhang, SB, Jiang, P, Zhang, X, Ren, HJ, Wang, ZQ, Cui, J (2015). Molecular identification and characterization of Trichinella spiralis proteasome subunit beta type-7. Parasites Vectors 8, 18. https://doi.org/10.1186/s13071-014-0626-zCrossRefGoogle ScholarPubMed
Yang, Y, Cai, YN, Tong, MW, Sun, N, Xuan, YH, Kang, YJ, Vallée, I, Boireau, P, Cheng, SP, Liu, MY (2016). Serological tools for detection of Trichinella infection in animals and humans. One Health 2, 2530. https://doi.org/10.1016/j.onehlt.2015.11.005CrossRefGoogle ScholarPubMed
Yera, H, Andiva, S, Perret, C, Limonne, D, Boireau, P, Dupouy-Camet, J (2003). Development and evaluation of a Western blot kit for diagnosis of human trichinellosis. Clinical and Diagnostic Laboratory Immunology 10, 5, 793796. https://doi.org/10.1128/cdli.10.5.793-796.2003Google ScholarPubMed
Zarlenga, D, Wang, Z, Mitreva, M (2016). Trichinella spiralis: Adaptation and parasitism. Veterinary parasitology 231, 821. https://doi.org/10.1016/j.vetpar.2016.07.003CrossRefGoogle ScholarPubMed
Zocevic, AMP, Vallee, I, Blaga, R, Liu, M, Lacour, SA, Boireau, P (2011). Identification of Trichinella spiralis early antigens at the pre-adult and adult stages. Parasitology 138, 4, 463471. https://doi.org/10.1017/S0031182010001526CrossRefGoogle ScholarPubMed
Zumaquero-Ríos, JL, García-Juarez, J, De-la-Rosa-Arana, JL, Marcet, R, Sarracent- Pérez, J (2012). Trichinella spiralis: monoclonal antibody against the muscular larvae for the detection of circulating and fecal antigens in experimentally infected rats. Experimental Parasitology 132, 4, 444449. https://doi.org/10.1016/j.exppara.2012.09.016CrossRefGoogle ScholarPubMed