Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T13:17:36.164Z Has data issue: false hasContentIssue false

Morphological and molecular evidence reveals a new species of Lyperosomum Looss, 1899 (Digenea: Dicrocoeliidae) from Melanerpes aurifrons (Wagler, 1829) from northern Mexico

Published online by Cambridge University Press:  01 June 2020

M.T. González-García
Affiliation:
Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Ciudad de MéxicoC.P. 04510, México
M.P. Ortega-Olivares
Affiliation:
Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Ciudad de MéxicoC.P. 04510, México
L. Andrade-Gómez
Affiliation:
Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Ciudad de MéxicoC.P. 04510, México Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, C. P. 04510, Distrito Federal, México
M. García-Varela*
Affiliation:
Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Ciudad de MéxicoC.P. 04510, México
*
Author for correspondence: M. García-Varela, E-mail: garciav@ib.unam.mx

Abstract

A new species of the genus Lyperosomum Looss, 1899, from the intestine of the golden-fronted woodpecker (Melanerpes aurifrons) from northern Mexico is described. Lyperosomum cuauhxinqui sp. n. is morphologically distinguished from other congeneric species from the Americas by a higher oral/ventral sucker ratio and its body length and width. The sequences of domains D1–D3 of the large subunit (LSU) of nuclear ribosomal DNA and cytochrome c oxidase subunit 1 (cox 1) from the mitochondrial DNA of the new species were obtained and compared with available sequences from GenBank. The genetic divergence estimated between the new species and other congeneric species ranged from 2 to 6% and 13.4 to 17.3% for LSU and cox 1, respectively. Phylogenetic analyses based on the two (LSU and cox 1) molecular markers consistently showed that L. cuauhxinqui sp. n. was nested within the genus Lyperosomum, with strong bootstrap support (100%) and Bayesian posterior probabilities (1.0). In particular, the LSU tree indicated that the sequence of the new species is closely related to sequences from Zonorchis alveyi, Zonorchis delectans and Zonorchis sp. from Central America, suggesting that these sequences should be transferred to the genus Lyperosomum. The new species represents the first record from Mexico and the fifth species identified in the Americas. Our study also revealed that the taxonomy of the genus Lyperosomum should be re-examined by combining molecular, morphological and ecological characteristics.

Type
Research Paper
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldhoun, J, Elmahy, R and Littlewood, DTJ (2018) Phylogenetic relationships within Dicrocoeliidae (Platyhelminthes: Digenea) from birds from the Czech Republic using partial 28S rDNA sequences. Parasitology Research 117, 36193624.CrossRefGoogle ScholarPubMed
American Ornithologists’ Union (AOU). (1998) Check-list of North American birds. 7th edn.829 pp. Washington, DC, AOU.Google Scholar
Bowles, J, Hope, M, Tiu, WU, Liu, X and McManus, DP (1993) Nuclear and mitochondrial genetic markers highly conserved between Chinese and Philippine Schistosoma japonicum. Acta Tropica 55, 217229.CrossRefGoogle ScholarPubMed
Denton, JF and Byrd, EE (1951) The helminth parasites of birds. III. Dicrocoeliid trematodes from North American birds. Proceedings of the United States National Museum 101, 157202.CrossRefGoogle Scholar
Denton, JF and Kinsella, JM (1972) Lyperosomum intermedium sp. n. (Digenea: Dicrocoeliidae) from the rice rat, Oryzomys palustris, from southeastern salt marshes. Journal of Parasitology 58, 226228.CrossRefGoogle Scholar
Denton, JF and Krissinger, WA (1975) Lyperosomum byrdi sp. n. (Digenea: Dicrocoeliidae) from the rufous sided towhee, Pipilo erythrophthalmus (L.), with a revised synopsis of the genus. Proceedings of the Helminthological Society of Washington 42, 3842.Google Scholar
Garci´a-Varela, M and Nadler, SA (2005) Phylogenetic relationships of Palaeacanthocephala (Acanthocephala) inferred from SSU and LSU rRNA gene sequences. Journal of Parasitology 91, 14011409.CrossRefGoogle Scholar
Gouy, M, Guindon, S and Gascuel, O (2010) SEAVIEW Version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution 27, 221224.CrossRefGoogle ScholarPubMed
Hildebrand, J, Pulis, EE and Tkach, VV (2015) Redescription and phylogenetic relationships of the rare Lyperosomum sarothrurae Baer, 1959 (Digenea: Dicrocoeliidae). Acta Parasitologica 60, 371377.CrossRefGoogle Scholar
Hildebrand, J, Sitko, J, Zaleśny, G, Jeżewski, W and Laskowski, Z (2016) Molecular characteristics of representatives of the genus Brachylecithum Shtrom, 1940 (Digenea, Dicrocoeliidae) with comments on life cycle and host specificity. Parasitology Research 115, 14171425.CrossRefGoogle ScholarPubMed
Hildebrand, J, Pyrka, E, Sitko, J, Jeżewski, W, Zaleśny, G, Tkach, VV and Laskowski, Z (2019) Molecular phylogeny provides new insights on the taxonomy and composition of Lyperosomum Looss, 1899 (Digenea, Dicrocoeliidae) and related genera. International Journal for Parasitology: Parasites and Wildlife 9, 9099.Google ScholarPubMed
Howell, SNG and Webb, S (1995) A guide to the birds of Mexico and Northern Central America. 851 pp. New York, Oxford University Press.Google Scholar
Liu, GH, Yan, HB, Otranto, D, Wang, XY, Zhao, GH, Jia, WZ and Zhu, XQ (2014) Dicrocoelium chinensis and Dicrocoelium dentriticum (Trematoda: Digenea) are distinct lancet fluke species based on mitochondrial and nuclear ribosomal DNA sequences. Molecular Phylogenetics and Evolution 79, 325331.CrossRefGoogle Scholar
Lunaschi, LI and Drago, FB (2013) Digenean parasites of the great antshrike, Taraba major (Aves: Themnophilidae), from Argentina, with a description of a new species of the genus Strigea (Strigeidae). Folia Parasitologica 60, 331338.CrossRefGoogle Scholar
Maddison, WP and Maddison, DR (2011) Mesquite: a modular system for evolutionary analysis. Version 3.61. Available at: http://mesquiteproject.org/Google Scholar
Miller, MA, Pfeiffer, W and Schwartz, T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Gateway Computing Environments Workshop (GCE), pp. 18. Available at: http://www.phylo.org.CrossRefGoogle Scholar
Nadler, SA, D'Amelio, S, Fagerholm, H-P, Berland, B and Paggi, L (2000) Phylogenetic relationships among species of Contracaecum Railliet & Henry, 1912 and Phocascaris Høst, 1932 (Nematoda: Ascaridoidea) based on nuclear rDNA sequence data. Parasitology 121, 455463.CrossRefGoogle ScholarPubMed
Odening, K (1964) Dicrocoelioidea und Microphalloidea (Trematoda: Plagiorchiasta) aus Voglen des Berlin Tierparks. Mitteilungen aus dem Zoologischen Museum in Berlin 40, 145184.Google Scholar
Olson, PD, Cribb, TH, Tkach, VV, Bray, RA and Littlewood, DTJ (2003) Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). International Journal for Parasitology 33, 733755.CrossRefGoogle Scholar
Pojmańska, T (2008) Family Dicrocoeliidae Looss, 1899. pp. 233260in Bray, RA., Gibson, DI and Jones, A (Eds) Keys to the Trematoda, Vol. 3. London, CABI Publishing and The Natural History Museum.CrossRefGoogle Scholar
Posada, D (2008) jModelTest: phylogenetic model averaging. Molecular Biology Evolution 25, 12531256.CrossRefGoogle ScholarPubMed
Rambaut, A (2012) FigTree v1.4.0. UK, Institute of Evolutionary Biology, University of Edinburgh.Google Scholar
Ronquist, F, Teslenko, M, Van der Mark, P, et al. (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61, 539542.CrossRefGoogle ScholarPubMed
Silvestro, D and Michalak, I (2011) RaxmlGUI: a graphical front-end for RAxML. Organisms Diversity & Evolution 12, 335337.CrossRefGoogle Scholar
Tamura, K, Stecher, G, Peterson, D, Filipski, A and Kumar, S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 27252729.CrossRefGoogle ScholarPubMed
Tkach, VV, Pawlowski, J and Mariaux, J (2000) Phylogenetic analysis of the suborder Plagiorchiata (Platyhelminthes, Digenea) based on partial IsrDNA sequences. International Journal for Parasitology 90, 8393.CrossRefGoogle Scholar
Tkach, VV, Pawlowski, J, Mariaux, J and Swiderski, Z (2001) Molecular phylogeny of the sub order Plagiorchiata and its position in the system of Digenea. pp. 186193in Littlewood, DTJ and Bray, RA (Eds) Interrelationships of the platyhelminthes. London, Taylor and Francis.Google Scholar
Tkach, VV, Achatz, TJ, Hildebrand, J and Greiman, SE (2018) Convoluted history and confusing morphology: molecular phylogenetic analysis of dicrocoeliids reveals true systematic position of the Anenterotrematidae Yamaguti, 1958 (Platyhelminthes, Digenea). Parasitology International 67, 501508.CrossRefGoogle Scholar
Travassos, L (1944) Revisão da familia Dicrocoeliidae, Odhner, 1910. 357 pp. Rio de Janeiro, Monografia do Instituto Oswaldo Cruz.Google Scholar