Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-26T21:52:21.677Z Has data issue: false hasContentIssue false

The effect of Anonchocephalus chilensis Riggenbach (Eucestoda: Bothriocephalidea) on infracommunity patterns in Genypterus maculatus Tschudi (Osteichthyes: Ophidiidae)

Published online by Cambridge University Press:  01 September 2008

S.A. Muñoz*
Affiliation:
Departamento de Ecología Costera, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile
M. George-Nascimento
Affiliation:
Departamento de Ecología Costera, Facultad de Ciencias, Universidad Católica de la Santísima Concepción, Casilla 297, Concepción, Chile

Abstract

The use of parasite body size (i.e. body mass) is a promising proxy to improve the study of patterns in parasite infracommunities, which are usually analysed using only numerical descriptors. This study deals with the importance and effect of the presence of a large endoparasite species, the cestode Anonchocephalus chilensis in a marine fish species, Genypterus maculatus, on the structure of the parasite infracommunities. Numerical and volumetric measures of aggregated properties of parasite infracommunities were compared and their correlation examined. The highly dominant presence of A. chilensis by volume causes a dramatic change in the patterns observed, including a smaller total volume of the remaining species when this volumetrically dominant species is present. However, C-scores and V-ratios, both indices based on null models of species occurrence, do not support the idea of communities structured by interspecific competition. Analyses reveal that numerical and volumetric community descriptors are complementary ways to search for patterns and to reveal processes within these systems.

Type
Research Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bush, A.O., Lafferty, K.D., Lots, J.M. & Shostak, A.W. (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.Google Scholar
George-Nascimento, M. & Huet, B. (1984) Una aproximación ecológica al estudio del parasitismo en el ‘congrio negro’ Genypterus maculatus (Tschudi) (Pisces: Ophidiidae). Biología Pesquera 13, 2330.Google Scholar
George-Nascimento, M. & Iriarte, J.L. (1989) Las infracomunidades de parásitos metazoos del chancharro Helicolenus lengerichi Norman, 1937 (Pisces, Scorpaenidae): un ensamble no interactivo de especies. Revista Chilena de Historia Natural 62, 217227.Google Scholar
George-Nascimento, M., Garcías, F. & Muñoz, G. (2002) Parasite body volume and infracommunity patterns in the southern pomfret Brama australis (Pisces: Bramidae). Revista Chilena de Historia Natural 75, 835839.Google Scholar
George-Nascimento, M., Muñoz, G., Marquet, P.A. & Poulin, R. (2004) Testing the energetic equivalence rule with helminth endoparasites of vertebrates. Ecology Letters 7, 527531.CrossRefGoogle Scholar
Gotelli, N.J. (2000) Null model analysis of species co-occurrence patterns. Ecology 81, 26062621.CrossRefGoogle Scholar
Gotelli, N.J. & Entsminger, G.L. (2007) EcoSim: null models software for ecology. Version 7.0. Jericho, Vermont, Acquired Intelligence Inc. & Kesey Bear. Available at websitehttp://garyentsminger.com/ecosim.htm.Google Scholar
Gotelli, N.J. & Rohde, K. (2002) Co-occurrence of ectoparasites of marine fishes: a null model analysis. Ecology Letters 5, 8694.Google Scholar
Micheli, F., Cottingham, K.L., Bascompte, J., Bjørnstad, O.N., Eckert, G.L., Fischer, J.M., Keitt, T.H., Kendall, B.E., Klug, J.L. & Rusak, J.A. (1999) The dual nature of community variability. Oikos 85, 161169.Google Scholar
Mouillot, D. (2002) Can we tell how a community was constructed? A comparison of five evenness indices for their ability to identify theoretical models of community construction. Theoretical Population Biology 61, 141151.CrossRefGoogle ScholarPubMed
Mouillot, D., George-Nascimento, M. & Poulin, R. (2003) How parasites divide resources: a test of the niche apportionment hypothesis. Journal of Animal Ecology 72, 757764.Google Scholar
Mouillot, D., George-Nascimento, M. & Poulin, R. (2005) Richness, structure and functioning in metazoan parasite communities. Oikos 109, 447460.CrossRefGoogle Scholar
Muñoz, G., Mouillot, D. & Poulin, R. (2006) Testing the niche apportionment hypothesis with parasite communities: is random assortment always the rule? Parasitology 132, 717724.CrossRefGoogle ScholarPubMed
Pedersen, A.B. & Fenton, A. (2007) Emphasizing ecology in parasite community ecology. Trends in Ecology and Evolution 22, 133139.CrossRefGoogle ScholarPubMed
Poulin, R. (1998) Evolutionary ecology of parasites: from individuals to communities. 212 pp. 1st edn.London, Chapman & Hall.Google Scholar
Poulin, R. & George-Nascimento, M. (2007) The scaling of total parasite biomass with host body mass. International Journal for Parasitology 37, 359364.CrossRefGoogle ScholarPubMed
Riffo, R. (1994) Composición taxonómica y características cuantitativas de la fauna de parásitos metazoos del congrio dorado Genypterus blacodes Schneider, 1801. Medio Ambiente 12, 2731.Google Scholar
Rohde, K. (1984) Ecology of marine parasites. Helgoländer Meeresunters 37, 533.Google Scholar
Rohde, K. (2005) Nonequilibrium ecology. 228 pp. 1st edn.Cambridge, Cambridge University Press.Google Scholar
Stock, T.M. & Holmes, J.C. (1987) Dioecocestus asper (Cestoda: Dioecestidae): an interference competitor in an enteric helminth community. Journal of Parasitology 73, 11161123.CrossRefGoogle Scholar
Tsutakawa, R.K. & Hewett, J.E. (1977) Quick test for comparing two populations with bivariate data. Biometrics 33, 215219.Google Scholar
Vergara, L. & George-Nascimento, M. (1982) Contribución al estudio del parasitismo en el congrio colorado Genypterus chilensis (Guichenot 1848). Boletín Chileno de Parasitología 37, 914.Google ScholarPubMed