Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-11T06:33:38.679Z Has data issue: false hasContentIssue false

Comparison of different PCR amplification targets for molecular diagnosis of Strongyloides stercoralis

Published online by Cambridge University Press:  17 November 2023

F. Marquet
Affiliation:
Instituto de Investigaciones Biomédicas “Dr. Francisco J. Triana Alonso” (BIOMED). Facultad de Ciencias de la Salud Sede Aragua, Universidad de Carabobo, Maracay, estado Aragua, Venezuela
N. Mora
Affiliation:
Instituto de Investigaciones Biomédicas “Dr. Francisco J. Triana Alonso” (BIOMED). Facultad de Ciencias de la Salud Sede Aragua, Universidad de Carabobo, Maracay, estado Aragua, Venezuela
R.N. Incani
Affiliation:
Departamento de Parasitología, Facultad de Ciencias de la Salud Sede Carabobo, Universidad de Carabobo, Valencia, estado Carabobo, Venezuela
J. Jesus
Affiliation:
Departamento de Parasitología, Facultad de Ciencias de la Salud Sede Carabobo, Universidad de Carabobo, Valencia, estado Carabobo, Venezuela
N. Méndez
Affiliation:
Departamento de Parasitología, Facultad de Ciencias de la Salud Sede Carabobo, Universidad de Carabobo, Valencia, estado Carabobo, Venezuela
R. Mujica
Affiliation:
Instituto de Investigaciones Biomédicas “Dr. Francisco J. Triana Alonso” (BIOMED). Facultad de Ciencias de la Salud Sede Aragua, Universidad de Carabobo, Maracay, estado Aragua, Venezuela
H. Trosel
Affiliation:
Instituto de Investigaciones Biomédicas “Dr. Francisco J. Triana Alonso” (BIOMED). Facultad de Ciencias de la Salud Sede Aragua, Universidad de Carabobo, Maracay, estado Aragua, Venezuela
E. Ferrer*
Affiliation:
Instituto de Investigaciones Biomédicas “Dr. Francisco J. Triana Alonso” (BIOMED). Facultad de Ciencias de la Salud Sede Aragua, Universidad de Carabobo, Maracay, estado Aragua, Venezuela Departamento de Parasitología, Facultad de Ciencias de la Salud Sede Aragua, Universidad de Carabobo, Maracay, estado Aragua, Venezuela
*
Corresponding author: E. Ferrer; Email: elizabeth.ferrer@gmail.com

Abstract

Molecular techniques are an alternative for the diagnosis of strongyloidiasis, produced by Strongyloides stercoralis. However, it is necessary to determine the best amplification target for the populations of this parasite present in a geographical area and standardize a polymerase chain reaction (PCR) protocol for its detection. The objectives of this work were the comparison of different PCR targets for molecular detection of S. stercoralis and the standardization of a PCR protocol for the selected target with the best diagnostic results. DNA extraction was performed from parasite larvae by saline precipitation. Three amplification targets of the genes encoding ribosomal RNA 18S (18S rDNA) and 5.8S (5.8S rDNA) and cytochrome oxidase 1 (COX1) of S. stercoralis were compared, and the PCR reaction conditions for the best target were standardized (concentration of reagents and template DNA, hybridization temperature, and number of cycles). The analytical sensitivity and specificity of the technique were determined. DNA extraction by saline precipitation made it possible to obtain DNA of high purity and integrity. The ideal target was the 5.8S rDNA, since the 18S rDNA yielded non-reproducible results and COX1 never amplified under any condition tested. The optimal conditions for the 5.8S rDNA-PCR were: 1.5 mM MgCl2, 100 μM dNTPs, 0.4 μM primers, and 0.75 U DNA polymerase, using 35 cycles and a hybridization temperature of 60 °C. The analytical sensitivity of the PCR was 1 attogram of DNA, and the specificity was 100%. Consequently, the 5.8S rDNA was shown to be highly sensitive and specific for the detection of S. stercoralis DNA.

Type
Short Communication
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bae, J, Jeong, MJ, Shin, DH, Kim, HW, Ahn, SH, Choi, JH, Yu, HS (2020). Phylogenetic positioning of a Strongyloides stercoralis isolate recovered from a Korean patient and comparison with other Asian isolates. The Korean Journal of Parasitology 58, 6, 689694. https://doi.org/10.3347/kjp.2020.58.6.689CrossRefGoogle Scholar
Barratt, J, Lane, M, Talundzic, E, Richins, T, Robertson, G, Formenti, F, Pritt, B, Verocai, G, Nascimento de Souza, J, Mato Soares, N, Traub, R, Buonfrate, D, Bradbury, RS (2019). A global genotyping survey of Strongyloides stercoralis and Strongyloides fuelleborni using deep amplicon sequencing. PLoS Neglected Tropical Diseases 13, 9, e0007609. https://doi.org/10.1371/journal.pntd.0007609CrossRefGoogle ScholarPubMed
Bosqui, L, Marquez, P, Melo, G, Rosario, M, Malta, F, Pavanelli, W, Conchon, I., Costa- Cruz, J, Costa, I (2018). Molecular and immune diagnosis: further testing for human strongyloidiasis. Molecular Diagnosis & Therapy 22, 4, 485491. https://doi.org/10.1007/s40291-018-0340-1CrossRefGoogle Scholar
Bradbury, R S, Pafčo, B, Nosková, E, Hasegawa, H (2021), Strongyloides genotyping: a review of methods and application in public health and population genetics. International Journal for Parasitology, 51, 1314, 1153–1166. https://doi.org/10.1016/j.ijpara.2021.10.001CrossRefGoogle ScholarPubMed
Buonfrate, D, Formenti, F, Perandin, F, Bisoffi, Z (2015a). Novel approaches to the diagnosis of Strongyloides stercoralis infection. Clinical Microbiology and Infection 21, 6, 543552. https://doi.org/10.1016/j.cmi.2015.04.001CrossRefGoogle Scholar
Buonfrate, D, Mena, M, Angheben, A, Requena-Mendez, A, Muñoz, J, Gobbi, F, Bisoffi, Z (2015b). Prevalence of strongyloidiasis in Latin America: a systematic review of the literatureEpidemiology and Infection 143, 3, 452460https://doi.org/10.1017/S0950268814001563CrossRefGoogle ScholarPubMed
Costa, IN, Bosqui, LR, Corral, MA, Costa-Cruz, JM, Gryschek, R, de Paula, FM (2021). Diagnosis of human strongyloidiasis: application in clinical practice. Acta Tropica 223, 106081. https://doi.org/10.1016/j.actatropica.2021.106081CrossRefGoogle ScholarPubMed
Cunningham, LJ, Stothard, JR, Osei-Atweneboana, M, Armoo, S, Verweij, JJ, Adams, ER (2018). Developing a real-time PCR assay based on multiplex high-resolution melt-curve analysis: a pilot study in detection and discrimination of soil-transmitted helminth and Schistosome species. Parasitology 145, 13, 17331738. https://doi.org/10.1017/S0031182018001361CrossRefGoogle ScholarPubMed
Dacal, E, Saugar, JM, Soler, TAzcárate, JMJiménez, M, Merino, F, Rodríguez, E (2018). Parasitological versus molecular diagnosis of strongyloidiasis in serial stool samples: how many. Journal of Helminthology 92, 1, 1216. https://doi.org/10.1017/S0022149X17000050CrossRefGoogle ScholarPubMed
Dacal, E, Köster, PC, Carmena, D (2020). Diagnóstico molecular de parasitosis intestinales. Enfermedades Infecciosas y Microbiología Clínica 38, 1, 2431. https://doi.org/10.1016/j.eimc.2020.02.005CrossRefGoogle ScholarPubMed
Eslahi, AV, Badri, M, Nahavandi, KH, Houshmand, E, Dalvand, S, Riahi, SM, Johkool, MG, Asadi, N, Hoseini Ahangari, SA, Taghipour, A, Zibaei, M, Khademvatan, S (2021). Prevalence of strongyloidiasis in the general population of the world: a systematic review and meta-analysis. Pathogens and global health 115, 1, 720. https://doi.org/10.1080/20477724.2020.1851922CrossRefGoogle ScholarPubMed
Fadaei Tehrani, M, Sharifdini, M, Zahabiun, F, Latifi, R, Kia, EB (2019). Molecular characterization of human isolates of Strongyloides stercoralis and Rhabditis spp. based on mitochondrial cytochrome c oxidase subunit 1 (cox1). BMC Infectious Diseases 19, 1, 776. https://doi.org/10.1186/s12879-019-4407-3CrossRefGoogle ScholarPubMed
Fernández-Rivas, G, Rivaya, B, Romani, N, Jun Hao Wang Alcaide, M, Matas, L (2016). [Diagnosis of soil-transmitted helminth infections. An unsolved problem in the omics era] Enfermedades Infecciosas y Microbiologia Clinica 37, 1, 2025. https://doi.org/10.1016/S0213-005X(19)30178-8CrossRefGoogle Scholar
Ferrer, E (2015). [Molecular techniques for the diagnosis of Chagas disease]. Revista Saber UDO 27, 3, 359371.Google Scholar
Ferrer, E, Sánchez, J, Milano, A, Álvarez, S, La Rosa, R, Lares, M, González, LM, Cortéz, MM, Dávila, I, Harrison, LJS, Parkhouse, RME, Gárate, T (2012). Diagnostic epitope variability within Taenia solium 8 kDa antigen family: implications for cysticercosis immunodetection. Experimental Parasitology 130, 1, 7885. https://doi.org/10.1016/j.exppara.2011.10.010CrossRefGoogle ScholarPubMed
Hailu, T, Amor, A, Nibret, E, Munshea, A, Anegagrie, M, Flores-Chavez, MD, Tang, TT, Saugar, JM, Benito, A (2022). Evaluation of five diagnostic methods for Strongyloides stercoralis infection in Amhara National Regional State, northwest Ethiopia. BMC Infectious Diseases 22, 1, 297. https://doi.org/10.1186/s12879-022-07299-1CrossRefGoogle ScholarPubMed
Hasegawa, H, Hayashida, S, Ikeda, Y, Sato, H (2009). Hyper-variable regions in 18S rDNA of Strongyloides spp. as markers for species-specific diagnosis. Parasitology Research 104, 4, 869874. https://doi.org/10.1007/s00436-008-1269-9CrossRefGoogle ScholarPubMed
Keiser, PB, Nutman, TB (2004). Strongyloides stercoralis in the immunocompromised populationClinical Microbiology Reviews 17, 1, 208217. https://doi.org/10.1128/CMR.17.1.208-217.2004CrossRefGoogle ScholarPubMed
Machado, ER, Teixeira, EM, Goncalves, M, Loureiro, ZM, Araújo, RA, Costa-Cruz, JM (2008). Parasitological and immunological diagnosis of Strongyloides stercoralis in patients with gastrointestinal cancerScandinavian Journal of Infectious Diseases 40, 2154158. https://doi.org/10.1080/00365540701558730CrossRefGoogle ScholarPubMed
Nilforoushan, M, Mirhendi, H, Rezaie, S, Rezaian, M, Meamar, A, Kia, EB (2007). A DNA-based identification of Strongyloides stercoralis isolates from Iran. Iran Journal of Public Health 36, 1620.Google Scholar
Nuñes, L, Pocaterra, L, Ferrara, G, Rojas, E, Pérez-Chacón, G, Hernán, A, Certan, G, Arenas, A, Goldstein, C (2017). [Strongyloidiasis in immunosuppressed]. Boletín Venezolano de Infectología, 28, 2, 134141.Google Scholar
Repetto, SA, Quarroz Braghini, J, Risso, MG, Argüello, LB, Batalla, EI, Stecher, DR, Sierra, MF, Burgos, JM, Radisic, MV, González Cappa, SM, Ruybal, P (2022). Molecular typing of Strongyloides stercoralis in Latin America, the clinical connection. Parasitology 149, 1, 2434. https://doi.org/10.1017/S0031182021001517CrossRefGoogle ScholarPubMed
Robertson, G, Koehler, A, Gasser, R, Watts, M, Norton, R, Bradbury, R (2017). Application of PCR-based tools to explore Strongyloides infection in people in parts of northern Australia. Tropical Medicine and Infectious Disease 2, 4, 6277. https://doi.org/10.3390/tropicalmed2040062CrossRefGoogle ScholarPubMed
Sambrook, J, Russell, D (2001). Molecular Cloning: A Laboratory Manual, Third Edition. New York: Cold Spring Harbor.Google Scholar
Sharifdini, M, Mirhendi, H, Ashrafi, K, Hosseini, M, Mohebali, M, Khodadadi, H, Kia, EB (2015). Comparison of nested polymerase chain reaction and real-time polymerase chain reaction with parasitological methods for detection of Strongyloides stercoralis in human fecal samples. American Journal of Tropical Medicine and Hygiene 93, 12851291. https://doi.org/10.4269/ajtmh.15-0309CrossRefGoogle ScholarPubMed
Saugar, M, Merino, F, Martin-Rabadán, P, Fernández, P, Ortega, S, Garate, T, Rodríguez, E (2015). Application of real-time PCR for the detection of Strongyloides spp. in clinical samples in a reference center in Spain. Acta Tropica 142, 1, 2025. https://doi.org/10.1016/j.actatropica.2014.10.020CrossRefGoogle Scholar
Verweij, J, Canales, M, Polman, K, Ziem, J, Brienen, E, Polderman, A, Van Lieshout, L (2009). Molecular diagnosis of Strongyloides stercoralis in faecal samples using real-time PCR. Transactions of the Royal Society of Tropical Medicine and Hygiene 103, 4, 342346. https://doi.org/10.1016/j.trstmh.2008.12.001CrossRefGoogle ScholarPubMed
World Health Organization (WHO) (2022). Control of neglected tropical diseases, Strongyloidiasis, key facts. Available at https://www.who.int/teams/control-of-neglected-tropical-diseases/soil-transmitted-helminthiases/strongyloidiasis (accessed 28 July 2023].Google Scholar
Yamasaki, H, Nakao, M, Sako, Y, Nakaya, K, Sato, MO, Mamuti, W, Okamoto, M, Ito, A (2002). DNA differential diagnosis of human taeniid cestodes by base excision sequence scanning thymine-base reader analysis with mitochondrial genes. Journal of Clinical Microbiology 40, 10, 38183821. https://doi.org/10.1128/JCM.40.10.3818-3821.2002CrossRefGoogle ScholarPubMed