Hostname: page-component-54dcc4c588-42vt5 Total loading time: 0 Render date: 2025-10-05T00:41:13.131Z Has data issue: false hasContentIssue false

Comparative mitogenomic analysis of three Bursaphelenchus species (Nematoda: Aphelenchoididae)

Published online by Cambridge University Press:  02 September 2025

X. Huang
Affiliation:
State Key Laboratory of Agricultural and Forestry Biosecurity, Nanjing Agricultural University, Nanjing 210095, China Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
J. Gu
Affiliation:
Ningbo Key Laboratory of Port Biological and Food Safety Testing, Ningbo Customs Technology Center (Ningbo Inspection and Quarantine Science Technology Academy), 8 Huikang, Ningbo 315100, China
Y. Ma
Affiliation:
Ningxia Rural Science and Technology Development Center, Yinchuan 750001, Ningxia, China
X. Qing
Affiliation:
State Key Laboratory of Agricultural and Forestry Biosecurity, Nanjing Agricultural University, Nanjing 210095, China Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
H. Li*
Affiliation:
State Key Laboratory of Agricultural and Forestry Biosecurity, Nanjing Agricultural University, Nanjing 210095, China Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
*
Corresponding author: H. Li; Email: lihm@njau.edu.cn

Abstract

The genus Bursaphelenchus has attracted significant attention due to its economically devastating and quarantined species – notably the pine wood nematode B. xylophilus and B. cocophilus. Despite their ecological and agricultural importance, genomic data for this genus remain scarce. In this study, we sequenced and assembled the complete mitochondrial genomes of three Bursaphelenchus species (B. chengi, B. parantoniae, and B. sinensis) using high-throughput sequencing. The circular mitogenomes exhibited size variation, with B. chengi (17,670 bp), B. parantoniae (15,021 bp), and B. sinensis (18,386 bp) each containing the typical nematode mitochondrial gene complement: 12 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, and 22 transfer RNA (tRNA) genes. Phylogenetic analysis based on the concatenated amino acid sequences of the 12 PCGs revealed that these species form a sister clade to B. xylophilus and B. mucronatus. Comparative mitogenomic analysis demonstrated a conserved gene arrangement shared among Bursaphelenchus, Aphelenchoides, Caenorhabditis, Cruznema tripartitum, and Pristionchus pacificus, suggesting strong evolutionary conservatism across the families Aphelenchoididae, Neodiplogasteridae, and Rhabditidae. Our study enriched the mitochondrial genomic resources for Bursaphelenchus and advanced resolution of their intrageneric phylogenetic relationships.

Information

Type
Review Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Abascal, F, Zardoya, R and Telford, MJ (2010) TranslatorX: Multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Research 38(2), W7W13.10.1093/nar/gkq291CrossRefGoogle ScholarPubMed
Ahmed, M, Roberts, NG, Adediran, F, Smythe, AB, Kocot, KM and Holovachov, O (2022) Phylogenomic analysis of the phylum Nematoda: Conflicts and congruences with morphology, 18S rRNA, and mitogenomes. Frontiers in Ecology and Evolution 9, 769565.10.3389/fevo.2021.769565CrossRefGoogle Scholar
Akbulut, S, Yüksel, B, Serin, M and Edem, M (2015) Comparison of pathogenic potential of Bursaphelenchus species on conifer seedlings between greenhouse and outdoor conditions. Phytoparasitica 43(2), 209214.10.1007/s12600-014-0433-2CrossRefGoogle Scholar
Benson, G (1999) Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Research 27(2), 573580.10.1093/nar/27.2.573CrossRefGoogle Scholar
Bernt, M, Donath, A, Jühling, F, Externbrink, F, Florentz, C, Fritzsch, G, Pütz, J, Middendorf, M and Stadler, PF (2013) MITOS: Improved de novo metazoan mitochondrial genome annotation. Molecular Phylogenetics and Evolution 69(2), 313319.10.1016/j.ympev.2012.08.023CrossRefGoogle ScholarPubMed
Blaxter, ML, De Ley, P, Garey, JR, Liu, LX, Scheldeman, P, Vierstraete, A, Vanfleteren, JR, Mackey, LY, Dorris, M, Frisse, LM, Vida, JT and Thomas, WK (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392(6671), 7175.10.1038/32160CrossRefGoogle ScholarPubMed
Boore, JL (1999) Animal mitochondrial genomes. Nucleic Acids Research 27(8), 17671780.10.1093/nar/27.8.1767CrossRefGoogle ScholarPubMed
Boore, JL and Brown, WM (1998) Big trees from little genomes: mitochondrial gene order as a phylogenetic tool. Current Opinion in Genetics & Development 8(6), 668674.10.1016/S0959-437X(98)80035-XCrossRefGoogle ScholarPubMed
Cameron, SL (2014) Insect mitochondrial genomics: Implications for evolution and phylogeny. Annual Review of Entomology 59(1), 9511710.1146/annurev-ento-011613-162007CrossRefGoogle ScholarPubMed
Chen, S, Zhou, Y, Chen, Y and Gu, J (2018) Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17), 884890.10.1093/bioinformatics/bty560CrossRefGoogle ScholarPubMed
Coomans, A (2000) Nematode systematics: past, present and future. Nematology, 2(1), 37.10.1163/156854100508845CrossRefGoogle Scholar
De Ley, P and Blaxter, ML (2004) A new system for Nematoda: Combining morphological characters with molecular trees, and translating clades into ranks and taxa. Proceedings of the Fourth International Congress of Nematology, 813.Google Scholar
Dierckxsens, N, Mardulyn, P and Smits, G (2017) NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Research 45(4), e18.Google ScholarPubMed
Du, H, Guo, F, Gao, Y, Wang, X, Qing, X and Li, H (2022) Complete mitogenome of Cruznema Tripartitum confirms highly conserved gene arrangement within family Rhabditidae. Journal of Nematology 54(1), 20220029.10.2478/jofnem-2022-0029CrossRefGoogle ScholarPubMed
Fritzsch, G, Schlegel, M and Stadler, PF (2006) Alignments of mitochondrial genome arrangements: Applications to metazoan phylogeny. Journal of Theoretical Biology 240(4), 511520.10.1016/j.jtbi.2005.10.010CrossRefGoogle ScholarPubMed
Fuchs, AG (1937) Neue parasitische und halbparasitische Nematoden bei borkenkäfern und einige andere Nematoden. I. Teil. Zoologische Jahrbücher. Abteilung für Systematik, Ökologie und Geographie der Tiere 70, 291380.Google Scholar
Gendron, EMS, Qing, X, Sevigny, JL, Li, H, Liu, Z, Blaxter, ML, Powers, TO, Thomas, WK and Porazinska, DL (2024) Comparative mitochondrial genomics in Nematoda reveal astonishing variation in compositional biases and substitution rates indicative of multi-level selection. BMC Genomics 25(1), 615.10.1186/s12864-024-10500-1CrossRefGoogle ScholarPubMed
Gu, J, Braasch, H, Burgermeister, W and Zhang, J (2006) Records of Bursaphelenchus spp. intercepted in imported packaging wood at Ningbo, China. Forest Pathology 36(5), 323333.10.1111/j.1439-0329.2006.00462.xCrossRefGoogle Scholar
Gu, J, Zheng, W and Chen, X (2008) Isolation and identification of Bursaphelenchus sinensis in Pinus massoniana in Ningbo. Journal of Zhejiang Forestry Science and Technology 28(5), 1013.Google Scholar
Holterman, M, van der Wurff, A, van den Elsen, S, van Megen, H, Bongers, T, Holovachov, O, Bakker, J and Helder, J (2006) Phylum-wide analysis of SSU rDNA reveals deep phylogenetic relationships among nematodes and accelerated evolution toward crown clades. Molecular Biology and Evolution 23(9), 17921800.10.1093/molbev/msl044CrossRefGoogle ScholarPubMed
Hyman, BC, Lewis, SC, Tang, S and Wu, Z (2011) Rampant gene rearrangement and haplotype hyper variation among nematode mitochondrial genomes. Genetics 139(5), 611615.Google Scholar
Kalyaanamoorthy, S, Bui, QM, Wong, TKF, von Haeseler, A and Jermiin, LS (2017) ModelFinder: Fast model selection for accurate phylogenetic estimates. Nature Methods 14(6), 587589.10.1038/nmeth.4285CrossRefGoogle ScholarPubMed
Kanzaki, N, Ekino, T and Giblin-Davis, RM (2019) Feeding dimorphism in a mycophagous nematode, Bursaphelenchus sinensis. Scientific Report 9(1), 13956.10.1038/s41598-019-50462-zCrossRefGoogle Scholar
Kanzaki, N and Futai, K (2006) Is Bursaphelenchus mucronatus a weak pathogen to the Japanese red pine? Nematology 8(4), 485489.Google Scholar
Kanzaki, N and Futai, K (2007) Isolation of Bursaphelenchus sinensis (Nematoda: Parasitaphelenchidae) from dead Japanese black pine, Pinus thunbergii Parl. in Japan. Journal of Nematode Morphology and Systematics 9(2), 129136.Google Scholar
Kanzaki, N and Giblin-Davis, RM (2018) Diversity and plant pathogenicity of Bursaphelenchus and related nematodes in relation to their vector bionomics. Current Forest Reports 4(2), 85100.10.1007/s40725-018-0074-7CrossRefGoogle Scholar
Kanzaki, N, Maehara, N, Aikawa, T and Togashi, K (2008) First report of parthenogenesis in the genus Bursaphelenchus Fuchs, 1937: A description of Bursaphelenchus okinawaensis sp. nov. isolated from Monochamus maruokai (Coleoptera: Cerambycidae). Zoological Science 25(8), 861873.10.2108/zsj.25.861CrossRefGoogle ScholarPubMed
Kern, EMA, Kim, T and Park, JK (2020) The mitochondrial genome in nematode phylogenetics. Frontiers in Ecology and Evolution 8, 250.10.3389/fevo.2020.00250CrossRefGoogle Scholar
Kikuchi, T, Cotton, JA, Dalzell, JJ, Hasegawa, K, Kanzaki, N, McVeigh, P, Takanashi, T, Tsai, IJ, Assefa, SA, Cock, PJA, Otto, TD, Hunt, M, Reid, AJ, Sanchez-Flores, A, Tsuchihara, K, Yokoi, T, Larsson, MC, Miwa, J, Maule, AG, Sahashi, N, Jones, JT and Berriman, M (2011) Genomic insights into the origin of parasitism in the emerging plant pathogen Bursaphelenchus xylophilus. PLoS Pathogens 7(9), e1002219.10.1371/journal.ppat.1002219CrossRefGoogle ScholarPubMed
Kim, T, Kim, J, Nadler, SA and Park, JK (2016) The complete mitochondrial genome of Koerneria sudhausi (Diplogasteromorpha: Nematoda) supports monophyly of Diplogasteromorpha within Rhabditomorpha. Current Genetics 62(2), 391403.10.1007/s00294-015-0536-4CrossRefGoogle ScholarPubMed
Kim, T, Lee, Y, Kil, HJ and Park, JK (2020) The mitochondrial genome of Acrobeloides varius (Cephalobomorpha) confirms non-monophyly of Tylenchina (Nematoda). Peer J 8, e9108.10.7717/peerj.9108CrossRefGoogle ScholarPubMed
Li, H, Handsaker, B, Wysoker, A, Fennell, T, Ruan, J, Homer, N, Marth, G, Abecasis, G and Durbin, R (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25(16), 20782079.10.1093/bioinformatics/btp352CrossRefGoogle ScholarPubMed
Li, H, Trinh, PQ, Waeyenberge, L and Moens, M (2008) Bursaphelenchus chengi sp. n. (Nematoda: Parasitaphelenchidae) isolated at Nanjing, China, in packaging wood from Taiwan. Nematology 10(3), 335346.10.1163/156854108783900294CrossRefGoogle Scholar
Maria, M, Fang, Y, He, J, Gu, J and Li, H (2015) Bursaphelenchus parantoniae n. sp. (Tylenchina: Aphelenchoididae) found in packaging wood from Belgium. Nematology 17(10), 11411152.10.1163/15685411-00002929CrossRefGoogle Scholar
Meng, G, Li, Y, Yang, C and Liu, S (2019) MitoZ: A toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Research 47(11), e63.10.1093/nar/gkz173CrossRefGoogle ScholarPubMed
Miller, MA, Pfeiffer, W and Schwartz, T (2010) Creating the CIPRES science gateway for inference of large phylogenetic trees. In Proceedings of the Gateway Computing Environments Workshop (GCE), 18.10.1109/GCE.2010.5676129CrossRefGoogle Scholar
Okimoto, R, Macfarlane, J, Clary, D and Wolstenholme, D (1992) The mitochondrial genomes of 2 nematodes, Caenorhabditis elegans and Ascaris suum. Genetics 130(3), 471498.Google Scholar
Palmisano, AM, Ambrogioni, L, Tomiczek, Ch and Brandstetter, M (2004) Bursaphelenchus sinensis sp. n. and B. thailandae braasch et braasch-bidasak in packaging wood from China. Nematologia Mediterranea 32(1), 5765.Google Scholar
Park, JK, Sultana, T, Lee, SH, Kang, S, Kim, H K, Min, GS, Eom, KS and Nadler, SA (2011) Monophyly of clade III nematodes is not supported by phylogenetic analysis of complete mitochondrial genome sequences. BMC Genomics 12, 392.10.1186/1471-2164-12-392CrossRefGoogle Scholar
Qing, X, Zhang, YM, Sun, S, Ahmed, M, Lo, WS, Bert, W, Holovachov, O and Li, H (2025) Phylogenomic Insights into the Evolution and Origin of Nematoda. Systematic Biology 74(3), 349358.10.1093/sysbio/syae073CrossRefGoogle ScholarPubMed
Ryss, AY and Subbotin, SA (2017) Coevolution of wood-inhabiting nematodes of the genus Bursaphelenchus Fuchs, 1937 with their insect vectors and plant hosts. Zhurnal Obshchei Biologii 78(3), 1342.Google Scholar
Ryss, AY, Kazartsev, IA and Kerchev, IA (2024) In vitro tests on the suitability of entomochore fungi vectored by Ips typographus for feeding and reproduction of nematodes of the genus Bursaphelenchus (Aphelenchoididae). Russian Journal of Nematology 32(2), 181192.Google Scholar
Sedlazeck, FJ, Rescheneder, P and von Haeseler, A (2013) NextGenMap: Fast and accurate read mapping in highly polymorphic genomes. Bioinformatics 29(21), 27902791.10.1093/bioinformatics/btt468CrossRefGoogle ScholarPubMed
Shen, W, Le, S, Li, Y and Hu, F (2016) SeqKit: A cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One 11(10), e0163962.10.1371/journal.pone.0163962CrossRefGoogle ScholarPubMed
Smythe, AB, Holovachov, O and Kocot, KM (2019) Improved phylogenomic sampling of free-living nematodes enhances resolution of higher-level nematode phylogeny. BMC Evolutionary Biology 19(10), 121.10.1186/s12862-019-1444-xCrossRefGoogle ScholarPubMed
Stamatakis, A (2014) RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9), 13121313.10.1093/bioinformatics/btu033CrossRefGoogle ScholarPubMed
Subbotin, SA and Del Prado-Vera, IC (2024) Molecular characterisation and diagnostics of the red ring nematode, Bursaphelenchus cocophilus, from Mexico. Nematology 26(6), 647657.10.1163/15685411-bja10329CrossRefGoogle Scholar
Sultana, T, Han, H and Park, JK (2013) Comparison of complete mitochondrial genomes of pine wilt nematode Bursaphelenchus xylophilus and Bursaphelenchus mucronatus (Nematoda: Aphelenchoidea) and development of a molecular tool for species identification. Gene 520(1), 3946.10.1016/j.gene.2013.02.006CrossRefGoogle ScholarPubMed
Sun, S, Shinya, R, Dayi, M, Yoshida, A, Sternberg, PW and Kikuchi, T (2020) Telomere-to-telomere genome assembly of Bursaphelenchus okinawaensis strain SH1. Microbiology Resource Announcements 9(43), e0100020.10.1128/MRA.01000-20CrossRefGoogle ScholarPubMed
Tang, S and Hyman, BC (2007) Mitochondrial genome haplotype hypervariation within the isopod parasitic nematode Thaumamermis cosgrovei. Genetics 176(2), 11391150.10.1534/genetics.106.069518CrossRefGoogle ScholarPubMed
van Megen, H, van den Elsen, S, Holterman, M, Karssen, G, Mooyman, P and Helder, J (2009) A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA Sequences. Nematology 11, 927950.10.1163/156854109X456862CrossRefGoogle Scholar
Wick, RR, Judd, LM, Gorrie, CL and Holt, KE (2017) Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Computation Biology 13(6), e1005595.10.1371/journal.pcbi.1005595CrossRefGoogle Scholar
Zardoya, R (2020) Recent advances in understanding mitochondrial genome diversity. F1000Research 9, 270.10.12688/f1000research.21490.1CrossRefGoogle ScholarPubMed
Zhao, ZQ, Gu, J, Greenwood, T, Rogan, B, Ho, W and Taylor, R (2024) Bursaphelenchus zealandicus sp. n. (Tylenchina: Aphelenchoididae), a new species of the hofmanni-group from Pinus radiata in New Zealand. Nematology 26(4), 447461.Google Scholar