Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-12T14:50:25.594Z Has data issue: false hasContentIssue false

Baltic cod endohelminths reflect recent ecological changes

Published online by Cambridge University Press:  15 May 2020

A.C. Setyawan
Affiliation:
Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
H.M. Jensen
Affiliation:
Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
P.W. Kania
Affiliation:
Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
K. Buchmann*
Affiliation:
Department of Veterinary and Animal Science, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
*
Author for correspondence: K. Buchmann, E-mail: kub@sund.ku.dk

Abstract

We suggest helminthological investigations of cod as a supplement to traditional biological and hydrographical methods for elucidation of ecological changes in the Baltic Sea. It is under discussion if oxygen deficit or seal abundance should explain the present critical situation of Baltic cod. A comparative investigation of endoparasitic helminths in Baltic cod (Gadus morhua), captured in the same marine habitat with an interval of 35 years (1983/2018) recorded 11 species of helminths comprising trematodes (Hemiurus luehei, Podocotyle atomon, Lepidapedon elongatum), nematodes (Contracaecum osculatum, Hysterothylacium aduncum, Capillaria gracilis, Cucullanus cirratus), cestodes (Bothriocephalus sp.) and acanthocephalans (Echinorhynchus gadi, Pomphorhynchus laevis, Corynosoma semerme). Significant prevalence and intensity increases were recorded for third-stage larvae of the nematode C. osculatum (liver location) and larvae of C. semerme (encapsulated in viscera). Both parasite species use grey seal as their final host, indicating the recent expansion of the Baltic seal population. A lower E. gadi intensity and an increased prevalence of L. elongatum of small cod (31–40 cm body length) suggest a lowered intake of amphipods (intermediate host) and elevated ingestion of polychaetes, respectively, but no significant changes were seen for other helminths.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Buchmann, K (1986) On the infection of Baltic cod (Gadus morhua L.) by the acanthocephalan Echinorhynchus gadi. Nordisk Veterinaer Medicin (Scandinavian Journal of Veterinary Medicine) 38, 308314.Google ScholarPubMed
Bush, AO, Lafferty, KD, Lotz, JM and Shostak, JW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. Journal of Parasitology 83, 575583.CrossRefGoogle Scholar
Eero, M, Hjelm, J, Behrens, J, et al. (2015) Eastern Baltic cod in distress: biological changes and challenges for stock assessment. ICES Journal of Marine Science 72(8), 21802186.CrossRefGoogle Scholar
Haarder, S, Kania, PW, Galatius, A and Buchmann, K (2014) Increased Contracaecum osculatum infection in Baltic cod (Gadus morhua) livers (1982−2012) associated with increasing grey seal (Halichoerus grypus) populations. Journal of Wildlife Diseases 50(3), 537543.CrossRefGoogle ScholarPubMed
Harding, KC, Härkönen, T, Helander, B and Karlsson, O (2007) Status of Baltic grey seals: population assessment and extinction risk. NAMMCO Scientific Publications 6, 3356.CrossRefGoogle Scholar
Herlemann, DPR, Labrenz, M, Jürgens, K, Bertilsson, S, Waniek, JJ and Andersson, AF (2011) Transitions in bacterial communities along the 2000km salinity gradient of the Baltic Sea. ISME Journal 5, 15711579.CrossRefGoogle Scholar
Horbowy, J, Podolska, M and Nadolna-Ałtyn, K (2016) Increasing occurrence of anisakid nematodes in the liver of cod (Gadus morhua) from the Baltic Sea: Does infection affect the condition and mortality of fish? Fisheries Research 179, 98103.CrossRefGoogle Scholar
Køie, M (1981) On the morphology and life-history of Podocotyle reflexa (Creplin, 1825) Odhner, 1905, and a comparison of its developmental stages with those of P. atomon (Rudolphi, 1802) Odhner, 1905 (Trematoda, Opecoelidae). Ophelia 20(1), 1743.CrossRefGoogle Scholar
Køie, M (1985) On the morphology and life-history of Lepidapedon elongatum (Lebour, 1908) Nicoll, 1910 (Trematoda, Lepocreadiidae). Ophelia 24(3), 135153.CrossRefGoogle Scholar
Køie, M (1990) On the morphology and life-history of Hemiurus Luehei Odhner, 1905 (Digenea: Hemiuridae). Journal of Helminthology 64, 193202.CrossRefGoogle Scholar
Køie, M (1993) Aspects of the life cycle and morphology of Hysterothylacium aduncum (Rudolphi, 1802) (Nematoda, Ascaridoidea, Anisakidae). Canadian Journal of Zoology 71(7), 12891296.CrossRefGoogle Scholar
Køie, M (1999) Metazoan parasites of Flounder Platichthys flesus (L.) along a transect from the southwestern to the northeastern Baltic Sea. ICES Journal of Marine Science 56, 157163.CrossRefGoogle Scholar
Køie, M (2001) The life-cycle of Capillaria gracilis (Capillariidae), a nematode parasite of gadoid fish. Sarsia 86, 383387.CrossRefGoogle Scholar
Køie, M and Fagerholm, HP (1995) The life-cycle of Contracaecum osculatum (Rudolphi, 1802) sensu stricto (Nematoda, Ascaridoidea, Anisakidae) in view of experimental infections. Parasitology Research 81, 481489.CrossRefGoogle ScholarPubMed
Lunneryd, SG, Bostrom, MK and Aspholm, PE (2015) Sealworm (Pseudoterranova decipiens) infection in grey seals (Halichoerus grypus), cod (Gadus morhua) and shorthorn sculpin (Myoxocephalus scorpius) in the Baltic Sea. Parasitology Research 114, 257264.CrossRefGoogle Scholar
MacKenzie, K (2002) Parasites as biological tags in population studies of marine organisms: an update. Parasitology 124, 153163.CrossRefGoogle ScholarPubMed
Marcogliese, DJ (2002) Food webs and the transmission of parasites to marine fish. Parasitology 124, 8399.CrossRefGoogle ScholarPubMed
Mehrdana, F, Marana, MH, Skov, J, Bahlool, QZM, Sindberg, D, Mundeling, M, Overgaard, BC, Kania, PW and Buchmann, K (2015) Eye fluke infection status in Baltic cod, Gadus morhua, after three decades and their use as ecological indicators. Acta Parasitologica 60(3), 423429.CrossRefGoogle ScholarPubMed
Myjak, P, Szostakowska, B, Wojciechowski, J, Pietkiewicz, H and Rokicki, J (1994) Anisakid larvae in cod from the southern Baltic Sea. Archives of Fisheries and Marine Research 42, 149161.Google Scholar
Nadolna, K and Podolska, M (2014) Anisakid larvae in the liver of cod (Gadus morhua) L. from the southern Baltic Sea. Journal of Helminthology 88, 237246.CrossRefGoogle ScholarPubMed
Nordenberg, CB (1963) Ichthyo-parasitological studies on the Baltic cod. Kungliga Fysiografiske Sälskap. Lund Förhandlingar 33, 4961.Google Scholar
Pawlak, J, Nadolna-Ałtyn, K, Szostakowska, B, Pachur, M and Podolska, M (2018) Saduria entomon infected with Hysterothylacium aduncum found in situ in the stomach of cod (Gadus morhua) from the Baltic Sea. Journal of Helminthology 92, 645648.CrossRefGoogle ScholarPubMed
Poulin, R (2006) Variation in infection parameters among populations within parasite species: Intrinsic properties versus local factors. International Journal for Parasitology 36, 877885.CrossRefGoogle ScholarPubMed
Reimer, LW (1970) Digene trematoden und Cestoden der Ostseefische als natürliche Fischmarken. Parasitologischen Schriftenreihe 20, 1143.Google Scholar
Rodjuk, GN (2014) Infestation rates of the main commercial fish species with larva of Contracaecum osculatum (Rudolphi, 1802) in Russian waters of the South Baltic in 2000–2012. Parasitologiya 48(3), 220232 (in Russian with English summary).Google Scholar
Sick, K (1965) Haemoglobin polymorphism of the cod in the Baltic and the Danish Belt Sea. Hereditas 54, 1948.CrossRefGoogle ScholarPubMed
Sinisalo, T and Valtonen, ET (2003) Corynosoma acanthocephalans in their paratenic fish hosts in the northern Baltic Sea. Parasite 10(3), 227233.CrossRefGoogle ScholarPubMed
Skrzypczak, M, Rokicki, J, Pawliczka, I, Najda, K and Dzido, J (2014) Anisakids of seals found on the southern coast of Baltic Sea. Acta Parasitologica 59, 165172.CrossRefGoogle ScholarPubMed
Sobecka, E, Łuczak, E, Więcaszek, B and Antoszek, A (2011) Parasite community structure of cod from Bear Island (Barents Sea) and Pomeranian Bay (Baltic Sea). Polish Polar Research 32(3), 253262.CrossRefGoogle Scholar
Sokolova, M, Buchmann, K, Huwer, B, Kania, PW, Krumme, U, Galatius, A, Hemmer-Hansen, J and Behrens, JW (2018) Spatial patterns in infection of cod Gadus morhua with the seal-associated liver worm Contracaecum osculatum from the Skagerrak to the central Baltic Sea. Marine Ecology Progress Series 606, 105118.CrossRefGoogle Scholar
Unger, P, Klimpel, S, Lang, T and Palm, HW (2014) Metazoan parasites from herring (Clupea harengus L.) as biological indicators in the Baltic Sea. Acta Parasitologica 59, 518528.CrossRefGoogle ScholarPubMed
Verweyen, L, Klimpel, S and Palm, HW (2011) Molecular Phylogeny of the Acanthocephala (Class Palaeacanthocephala) with a Paraphyletic Assemblage of the Orders Polymorphida and Echinorhynchida. PLoS ONE 6(12), e28285.CrossRefGoogle ScholarPubMed
Williams, HH, MacKenzie, K and McCarthy, AM (1992) Parasites as biological indicators of the population biology, migrations, diet, and phylogenetics of fish. Reviews in Fish Biology and Fisheries 2, 144176.CrossRefGoogle Scholar
Zhu, X, Gasser, RB, Podolska, M and Chilton, MB (1998) Characterisation of anisakid nematodes with zoonotic potential by nuclear ribosomal DNA sequences. International Journal for Parasitology 28, 19111921.CrossRefGoogle ScholarPubMed
Zilberg, D, Jones, B, Mieke, A, Burger, A, Nicholls, PK, Nolan, D, Crockford, M and Stephens, F (2012) New pathological condition in cultured mulloway Argyrosomus japonicus: histopathological, ultrastructural and molecular studies. Diseases of Aquatic Organisms 100, 219230.CrossRefGoogle ScholarPubMed
Zuo, S, Huwer, B, Bahlool, Q, Al-Jubury, A, Christensen, ND, Korbut, R, Kania, P and Buchmann, K (2016) Host size dependent anisakid infection in Baltic cod Gadus morhua associated with differential food preferences. Diseases of Aquatic Organisms 120, 6975.CrossRefGoogle ScholarPubMed
Zuo, S, Kania, PW, Mehrdana, F, Marana, MH and Buchmann, K (2018) Contracaecum osculatum and other anisakid nematodes in grey seals and cod in the Baltic sea: molecular and ecological links. Journal of Helminthology 92, 8189.CrossRefGoogle ScholarPubMed