Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T20:54:41.613Z Has data issue: false hasContentIssue false

Aminopeptidases in Caenorhabditis elegans and Panagrellus redivivus: detection using peptide and non-peptide substrates

Published online by Cambridge University Press:  12 April 2024

E.P. Masler*
Affiliation:
Nematology Laboratory, United States Department of Agriculture, Agricultural Research Service, 10300 Baltimore Avenue, BARC-West, Beltsville, MD 20705-2350, USA
*
*Fax: 301 504 5589 Email: maslere@ba.ars.usda.gov
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Aminopeptidase activities were detected in extracts of the free-living nematodes Caenorhabditis elegans and Panagrellus redivivus using the aminoacyl substrate L-alanine-4-nitroanilide. The activities exhibited similarities in Km (C. elegans = 2.22 mM; P. REDIVIVUS = 2.09 Mm) and specific activity (C. elegans=1.38±0.43 mAU min-1 μg-1; P. redivivus, 1.23±0.18 mAU min-1 μg-1). Each is inhibited competitively by amastatin (C. elegans IC50=0.46 μm; P. redivivus IC50=15.90 μm) and non-competitively by leuhistin (C. elegans IC50=3.00 μm; P. redivivus IC50=37.35 μm). The bioactive peptides adipokinetic hormone and substance P decrease the apparent aminopeptidase activities of each extract suggesting that the peptides compete with the Ala-pNA as substrates. With each extract, adipokinetic hormone appeared to be the more effective substrate. Digestion of adipokinetic hormone by C. elegans and P. redivivus extracts in the presence and absence of 1 mm amastatin produced distinct chromatographic profiles that suggest different digestion patterns for the two species. However, amastatin had clear effects on chromatographic profiles from each species indicating that an aminopeptidase is involved in the digestion of the peptide substrates. The data presented indicate that extracts of free-living nematodes are capable of metabolizing peptide hormones, and that this metabolism involves substrate-selective aminopeptidases.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2002

References

Baset, H.A., Ford-Hutchinson, A.W. & O'Neill, G.P. (1998) Molecular cloning and functional expression of a Caenorhabditis elegans aminopeptidase structurally related to mammalian leukotriene A4 hydrolases.. Journal of Biological Chemistry 273, 2797827987.CrossRefGoogle ScholarPubMed
Brownlee, D.J.A. & Fairweather, I. (1999) Exploring the neurotransmitter labyrinth in nematodes. Trends in Neurosciences 22, 1624.CrossRefGoogle ScholarPubMed
Chitwood, D.J., Lusby, W.R., Thompson, M.J., Kochansky, J.P. & Howarth, O.W. (1995) The glycosylceramides of the nematode Caenorhabditis elegans contain an unusual, branched-chain sphingoid base. Lipids 30, 567573.CrossRefGoogle ScholarPubMed
Davenport, T.R.B., Isaac, R.E. & Lee, D.L. (1991) The presence of peptides related to the adipokinetic hormone/red pigment-concentrating hormone family in the nematode, Panagrellus redivivus . General and Comparative Endocrinology 81, 419425.CrossRefGoogle Scholar
Davis, R.E. & Stretton, A.O.W. (1995) Neurotransmitters of helminths, pp. 257287 in Marr, J.J. & Muller, M. (Eds) Biochemistry and molecular biology of parasites. New York Academic Press.CrossRefGoogle Scholar
Day, T.A. & Maule, A.G. (1999) Parasitic peptides. The structure and function of neuropeptides in parasitic worms. Peptides 20, 9991019.CrossRefGoogle ScholarPubMed
Dorris, M., De Ley, P. & Blaxter, M.L. (1999) Molecular analysis of nematode diversity and the evolution of parasitism. Parasitology Today 15, 188193.CrossRefGoogle ScholarPubMed
Gimenez-Pardo, C., Vazquez-Lopez, C., de Armas-Serra, C. & Rodriguez-Caabeiro, F. (1999) Proteolytic activity in Caenorhabditis elegans: soluble and insoluble fractions. Journal of Helminthology 73, 123127.CrossRefGoogle Scholar
Hong, X., Bouvier, J., Wong, M.M., Yamagata, G.Y.L. & McKerrow, J.H. (1993) Brugia pahangi: identification and purification of an aminopeptidase associated with larval molting. Experimental Parasitology 76, 127133.CrossRefGoogle ScholarPubMed
Keller, R. (1992) Crustacean neuropeptides: structures, functions and comparative aspects. Experientia 48, 439448.CrossRefGoogle ScholarPubMed
Kubiak, T.M., Maule, A.G., Marks, N.J., Martin, R.A. & Wiest, J.R. (1996) Importance of the proline residue to the functional activity and metabolic stability of the nematode FMRFamide-related peptide, KPNFIRFamide (PF4). Peptides 17, 12671277.CrossRefGoogle Scholar
Masler, E.P., Kelly, T.J. & Menn, J.J. (1993) Insect neuropeptides: discovery and application in insect management. Archives of Insect Biochemistry and Physiology 22, 87111.CrossRefGoogle ScholarPubMed
Masler, E.P., Wagner, R.M. & Kovaleva, E.S. (1996) In vitro metabolism of an insect neuropeptide by neural membrane preparations from Lymantria dispar. Peptides . Peptides 17, 321326.CrossRefGoogle Scholar
Muneoka, Y. & Kobayashi, M. (1992) Comparative aspects of structure and action of molluscan neuropeptides. Experientia 48, 448456.CrossRefGoogle ScholarPubMed
Nassel, D.R. (1993) Neuropeptides in the insect brain: a review. Cell and Tissue Research 273, 129.CrossRefGoogle ScholarPubMed
Nelson, L.S., Kim, K., Memmott, J.E. & Li, C. (1998) FMRFamide-related gene family in the nematode, Caenorhabditis elegans . Molecular Brain Research 58, 103111.CrossRefGoogle ScholarPubMed
Rayne, R.C. & O'Shea, M. (1992) Inactivation of neuropeptide hormones (AKH I and AKH II) studied in vivo and in vitro . Insect Biochemistry and Molecular Biology 22, 2534.CrossRefGoogle Scholar
Rhoads, M.L., Fetterer, R.H. & Urban, J.F. (1998) Effect of protease class-specific inhibitors on in vitro development of the third-to fourth-stage larvae of Ascaris suum . Journal of Parasitology 84, 686690.CrossRefGoogle ScholarPubMed
Rhoads, M.L., Fetterer, R.H. & Hill, D.E. (2000) Trichuris suis: a secretory serine protease inhibitor. Experimental Parasitology 94, 17.CrossRefGoogle ScholarPubMed
Sajid, M. & Isaac, R.E. (1995) Identification and properties of a neuropeptide-degrading endopeptidase (neprilysin) of Ascaris suum muscle. Parasitology 111, 599608.CrossRefGoogle ScholarPubMed
Sajid, M., Keating, C., Holden-Dye, L., Harrow, I.D. & Isaac, R.E. (1996) Metabolism of AF1 (KNEFIRF-NH2) in the nematode, Ascaris suum, by aminopeptidase, endopeptidase and deamidase enzymes. Molecular and Biochemical Parasitology 75, 159168.CrossRefGoogle ScholarPubMed
Sajid, M., Isaac, R.E. & Harrow, I.D. (1997) Purification and properties of a membrane aminopeptidase from Ascaris suum muscle that degrades neuropeptides AF1 and AF2. Molecular and Biochemical Parasitology 89, 225234.CrossRefGoogle ScholarPubMed
Shaw, C. (1996) Neuropeptides and their evolution. Parasitology 113, S35S45.CrossRefGoogle ScholarPubMed
Smart, D., Johnston, C.F., Maule, A.G., Halton, D.W., Hrckova, G., Shaw, C. & Buchanan, K.D. (1995) Localization of Diploptera punctata allatostatin-like immunoreactivity in helminths: an immunocytochemical study. Parasitology 110, 8796.CrossRefGoogle ScholarPubMed
Sokol, S.B. & Kuwabara, P.E. (2000) Proteolysis in Caenorhabditis elegans sex determination: cleavage of TRA-2A by TRA-3. Genes and Development 14, 901906.CrossRefGoogle ScholarPubMed
Waggoner, L.E., Hardaker, L.A., Golik, S. & Schafer, W.R. (2000) Effect of a neuropeptide gene on behavioral states in Caenorhabditis elegans egg-laying. Genetics 154, 11811192.CrossRefGoogle ScholarPubMed
Zenka, J. & Prokopic, J. (1985) Aminopeptidase inhibitor from Ascaris suum . Folia Parasitologica 32, 247253.Google ScholarPubMed