Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T00:28:19.011Z Has data issue: false hasContentIssue false

In vitro nematocidal activity of commercial fatty acids and β-sitosterol against Haemonchus contortus

Published online by Cambridge University Press:  04 March 2020

J.A. Pineda-Alegría
Affiliation:
Area de Helmintología, CENID-Salud Animal e Inocuidad, INIFAP, Jiutepec, Morelos, México
J.E. Sánchez
Affiliation:
El Colegio de la Frontera Sur, km 2.5 Carretera al Antiguo Aeropuerto, Tapachula, Chiapas, México
M. González-Cortazar
Affiliation:
Centro de Investigaciones Biomédicas del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelos, México
E. von Son-de Fernex
Affiliation:
Centro de Enseñanza Investigación y Extensión en Ganadería Tropical, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Tlapacoyan, Veracruz, México
R. González-Garduño
Affiliation:
Universidad Autónoma Chapingo, Teapa, Tabasco, Mexico
Pedro Mendoza-de Gives
Affiliation:
Area de Helmintología, CENID-Salud Animal e Inocuidad, INIFAP, Jiutepec, Morelos, México
A. Zamilpa
Affiliation:
Centro de Investigaciones Biomédicas del Sur, Instituto Mexicano del Seguro Social, Xochitepec, Morelos, México
L. Aguilar-Marcelino*
Affiliation:
Area de Helmintología, CENID-Salud Animal e Inocuidad, INIFAP, Jiutepec, Morelos, México
*
Author for correspondence: L. Aguilar-Marcelino, E-mail: aguilar.liliana@inifap.gob.mx

Abstract

Haemonchus contortus is a haematophagous gastrointestinal nematode (GIN) that causes severe anaemia and even death in small ruminants, negatively impacting the economic viability of farms. Traditionally, this parasite has been controlled with chemical compounds; however, inadequate use of these types of products has favoured the emergence of anthelmintic resistance. Therefore, it is necessary to search for alternatives for GIN control. Previous studies have reported the anthelmintic activity of edible mushroom extracts against H. contortus. A recent study reported that a fraction constituted of different fatty acids and β-sitosterol isolated from the basidiomata of the edible mushroom Pleurotus djamor ECS-123 has ovicidal and larvicidal activity against H. contortus. Thus, this study aimed to assess the anthelmintic activity of the pure molecules: pentadecanoic acid, palmitic acid, β-sitosterol, stearic acid and linoleic acid. For this purpose, an egg-hatching inhibition test was carried out in which the compounds were evaluated individually and in combination at a final concentration of 20 mg mL−1. Furthermore, larval mortality was assessed using a combination of the five commercial compounds previously mentioned at different concentrations (1.25–20 mg mL−1). Palmitic acid and stearic acid, in some combinations, inhibited H. contortus egg hatching by 100%. On the other hand, in the larval mortality test, the combination of the five compounds showed dose-dependent behaviour, and 100% mortality was obtained 24 h post-incubation. Pure molecules and their combinations have anthelmintic-like activity against the eggs and larvae of H. contortus.

Type
Research Paper
Copyright
Copyright © The Author(s) 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahad, MA, Nahar, MK, Armin, MR, Suh, SJ and Kwon, YJ (2016) Effect of weed extracts against pulse beetle, Callosobruchus chinensis L. (Coleoptera: Bruchidae) of mung bean. Bangladesh Journal of Agricultural Research 41(1), 7584.CrossRefGoogle Scholar
Aparicio-Medina, MJ, Paredes-Vanegas, V, González-López, O and Navarro-Reyes, O (2011) Effect of ivermectin on the environment. La Calera 11(17), 6466.CrossRefGoogle Scholar
Becerra-Nava, R, Alonso-Díaz, MA, Fernández-Salas, A and Quiroz, RH (2014) First report of cattle farms with gastrointestinal nematodes resistant to levamisole in Mexico. Veterinary Parasitology 204(3), 285290.CrossRefGoogle ScholarPubMed
Besier, RB, Kahn, LP, Sargison, ND and Van Wyk, JA (2016) The pathophysiology, ecology and epidemiology of Haemonchus contortus infection in small ruminants. Vol. 93, pp. 95143in Gasser, RB and Samson-Himmelstjerna, GV (Eds) Eds) Advances in parasitology. London, Academic Press.Google Scholar
Carvalho, CO, Chagas, ACS, Cotinguiba, F, Furlan, M, Brito, LG, Chaves, FCM, Stephan, M, Bizzo, H and Amarante, AFT (2012) The anthelmintic effect of plant extracts on Haemonchus contortus and Strongyloides venezuelensis. Veterinary Parasitology 183(3), 260268.CrossRefGoogle ScholarPubMed
Chaparro, JJ, Villar, D, Zapata, JD, Lopez, S, Howell, SB, Lopez, A and Storey, BE (2017) Multi-drug resistant Haemonchus contortus in a sheep flock in Antioquia, Colombia. Veterinary Parasitology: Regional Studies and Reports 10, 2934.Google Scholar
de Carvalho, C and Caramujo, MJ (2018) The various roles of fatty acids. Molecules (Basel, Switzerland) 23(10), 2583.CrossRefGoogle ScholarPubMed
Deepak, M, Dipankar, G, Prashanth, D, Asha, MK, Amit, A and Venkataraman, BV (2002) Tribulosin and β-sitosterol-D-glucoside, the anthelmintic principles of Tribulus terrestris. Phytomedicine 9(8), 753756.CrossRefGoogle ScholarPubMed
Giovanelli, F, Mattellini, M, Fichi, G, Flamini, G and Perrucci, S (2018) Veterinary sciences in vitro anthelmintic activity of four plant-derived compounds against sheep gastrointestinal nematodes. Veterinary Sciences 5(78), 18.CrossRefGoogle ScholarPubMed
González-Garduño, R, Mendoza-de Gives, P, López-Arellano, ME, Aguilar-Marcelino, L, Torres-Hernández, G, Ojeda-Robertos, NF and Torres-Acosta, JFJ (2018) Influence of the physiological stage of Blackbelly sheep on immunological behaviour against gastrointestinal nematodes. Experimental Parasitology 193, 2026.CrossRefGoogle ScholarPubMed
Grisi, L, Cerqueira, R, de Souza, JR, Madeiros, AT, Andreotti, R, Duarte, PH, Pérez, AA, Barros, J and Silva, H (2014) Reassessment of the potential economic impact of cattle parasites in Brazil. Revista Brasileira de Parasitologia Veterinária 23, 150156.CrossRefGoogle Scholar
Kumarasingha, R, Karpe, AV, Preston, S, et al. (2016) Metabolic profiling and in vitro assessment of anthelmintic fractions of Picria fel-terrae Lour. International Journal for Parasitology: Drugs and Drug Resistance 6(3), 171178.Google ScholarPubMed
Li, GH and Zhang, KQ (2014) Nematode-toxic fungi and their nematicidal metabolites. pp. 313364in Zhang, K-Q and Hyde, K (Eds) Nematode-trapping fungi. 1st edn.Dordrecht, Springer.CrossRefGoogle Scholar
Liébano, HE, López-Arellano, ME, Mendoza-de-Gives, P and Aguilar-Marcelino, L (2011) Manual de diagnóstico para la identificación de larvas de nematodos gastrointestinales en rumiantes. Special Handbook No. 2. pp. 148. Morelos, México, INIFAP.Google Scholar
Mamode, A, Gouguet, P, Gronnier, J, et al. (2019) Plant lipids: key players of plasma membrane organization and function. Progress in Lipid Research 73, 127.CrossRefGoogle Scholar
Mendoza-de Gives, P, López-Arellano, ME, Aguilar-Marcelino, L, Olazarán-Jenkins, S, Reyes-Guerrero, D, Ramírez-Várgas, G and Vega-Murillo, VE (2018) The nematophagous fungus Duddingtonia flagrans reduces the gastrointestinal parasitic nematode larvae population in faeces of orally treated calves maintained under tropical conditions—dose/response assessment. Veterinary Parasitology 263, 6672.CrossRefGoogle ScholarPubMed
Pineda-Alegría, JA, Sánchez-Vázquez, JE, González-Cortazar, M, Zamilpa, A, López-Arellano, ME, Cuevas-Padilla, EJ, Mendoza-de-Gives, P and Aguilar-Marcelino, L (2017) The edible mushroom Pleurotus djamor produces metabolites with lethal activity against the parasitic nematode Haemonchus contortus. Journal of Medicinal Food 20(12), 11841192.CrossRefGoogle ScholarPubMed
Ramos, F, Pires, L, de Souza, F, Zamperete, C, Pötter, L, Skrebsky, A, Sangioni, L and Flores, FS (2016) Anthelmintic resistance in gastrointestinal nematodes of beef cattle in the state of Rio Grande do Sul, Brazil. International Journal for Parasitology: Drugs and Drug Resistance 6(1), 93101.Google Scholar
Rodríguez-Martinez, R, Mendoza-de-Gives, P, Aguilar-Marcelino, L, Lopez-Arellano, ME, Gamboa-Angulo, M, Rosas-Saito, GH, Reyes-Estebanez, M and Guadalupe Garcia-Rubio, V (2018) In vitro lethal activity of the nematophagous fungus Clonostachys rosea (Ascomycota: Hypocreales) against nematodes of five different taxa. BioMed Research International 2018, 3501827.CrossRefGoogle ScholarPubMed
Rodríguez-Vivas, RI, Grisi, L, Pérez, AA, et al. (2017) Potential economic impact assessment for cattle parasites in Mexico. Review. Revista Mexicana De Ciencias Pecuarias 8(1), 6174.CrossRefGoogle Scholar
Stadler, M, Mayer, A, Anke, H and Sterner, O (1994) Fatty acids and other compounds with nematicidal activity from cultures of basidiomycetes. Planta Medica 60, 128132.CrossRefGoogle ScholarPubMed
Torres-Acosta, F, Sandoval-Castro, C, Cámara-Sarmiento, R and Aguilar-Caballero, A (2012) Métodos alternativos para el control de nematodos gastrointestinales en pequeños rumiantes: estado del arte. OA, Castelán, MA, Álvarez, JA, Bernués, VJ, Ku, VC, Silveira (Eds) Avances de investigación en producción animal en Iberoamérica. 1st edn.Mérida, Yucatán, México, Universidad Autónoma de Yucatán, pp. 393–412.Google Scholar
von Son-de Fernex, E, Alonso-Díaz Miguel, Á, Valles-de la Mora, B, Mendoza-de Gives, P, Castillo-Gallegos, E, Zamilpa, A and González-Cortazar, M (2018) Effect of Gliricidia sepium leaves intake on larval establishment of Cooperia punctata in calves and bio-guided fractionation of bioactive molecules. Veterinary Parasitology 252, 137141.CrossRefGoogle ScholarPubMed