Published online by Cambridge University Press: 25 August 2020
The wavelet-based adaptive large-eddy simulation method is extended for computational modelling of compressible wall-bounded attached turbulent flows. The wavelet-threshold filtered compressible Navier–Stokes equations are derived. The unclosed terms in the governing equations are approximated by using eddy-viscosity and eddy-conductivity modelling procedures based on the anisotropic minimum-dissipation approach. The proposed filtering procedure is integrated with the adaptive anisotropic wavelet collocation method, which allows for the appropriate mesh stretching in the wall-normal direction. The performance of the method is assessed by conducting adaptive numerical simulations of fully developed supersonic flow in a plane channel with isothermal walls, which represents a well-established benchmark for wall-bounded turbulent compressible flows. The present results demonstrate both the feasibility and the effectiveness of the novel wavelet-based adaptive method in the high-speed compressible regime, showing good agreement with reference numerical solutions.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.