Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T01:18:16.719Z Has data issue: false hasContentIssue false

Wave drag on asymmetric bodies

Published online by Cambridge University Press:  04 September 2019

G. P. Benham*
Affiliation:
LadHyX, UMR CNRS 7646, Ecole polytechnique, 91128 Palaiseau, France
J. P. Boucher
Affiliation:
LadHyX, UMR CNRS 7646, Ecole polytechnique, 91128 Palaiseau, France
R. Labbé
Affiliation:
LadHyX, UMR CNRS 7646, Ecole polytechnique, 91128 Palaiseau, France
M. Benzaquen
Affiliation:
LadHyX, UMR CNRS 7646, Ecole polytechnique, 91128 Palaiseau, France
C. Clanet
Affiliation:
LadHyX, UMR CNRS 7646, Ecole polytechnique, 91128 Palaiseau, France
*
Email address for correspondence: graham.benham@ladhyx.polytechnique.fr

Abstract

An asymmetric body with a sharp leading edge and a rounded trailing edge produces a smaller wave disturbance moving forwards than backwards, and this is reflected in the wave drag coefficient. This experimental fact is not captured by Michell’s theory for wave drag (Michell Lond. Edinb. Dubl. Phil. Mag. J. Sci., vol. 45 (272), 1898, pp. 106–123). In this study, we use a tow-tank experiment to investigate the effects of asymmetry on wave drag, and show that these effects can be replicated by modifying Michell’s theory to include the growth of a symmetry-breaking boundary layer. We show that asymmetry can have either a positive or a negative effect on drag, depending on the depth of motion and the Froude number.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benham, G. P., Hewitt, I. J., Please, C. P. & Bird, P. A. D. 2018 Optimal control of diffuser shapes for non-uniform flow. J. Engng. Maths 113 (1), 6592.Google Scholar
Benzaquen, M., Chevy, F. & Raphaël, E. 2011 Wave resistance for capillary gravity waves: finite-size effects. Europhys. Lett. 96 (3), 34003.Google Scholar
Benzaquen, M. & Raphael, E. 2012 Capillary-gravity waves on depth-dependent currents: consequences for the wave resistance. Europhys. Lett. 97 (1), 14007.Google Scholar
Berberović, E., van Hinsberg, N. P., Jakirlić, S., Roisman, I. V. & Tropea, C. 2009 Drop impact onto a liquid layer of finite thickness: dynamics of the cavity evolution. Phys. Rev. E 79 (3), 036306.Google Scholar
Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. 2017 Julia: a fresh approach to numerical computing. SIAM Rev. 59 (1), 6598.Google Scholar
Boucher, J. P.2018 Problèmes d’optimisation à la surface de l’eau. PhD thesis, Ecole polytechnique.Google Scholar
Boucher, J. P., Labbé, R., Clanet, C. & Benzaquen, M. 2018 Thin or bulky: optimal aspect ratios for ship hulls. Phys. Rev. Fluids 3, 074802.Google Scholar
Dambrine, J., Pierre, M. & Rousseaux, G. 2016 A theoretical and numerical determination of optimal ship forms based on Michell’s wave resistance. ESAIM: Control Optim. Calculus Variations 22 (1), 88111.Google Scholar
Darmon, A., Benzaquen, M. & Raphaël, E. 2014 Kelvin wake pattern at large froude numbers. J. Fluid Mech. 738, R3.Google Scholar
Dunning, I., Huchette, J. & Lubin, M. 2017 Jump: a modeling language for mathematical optimization. SIAM Rev. 59 (2), 295320.Google Scholar
Fourdrinoy, J., Caplier, C., Devaux, Y., Rousseaux, G., Gianni, A., Zacharias, I., Jouteur, I., Martin, P. M., Dambrine, J., Petcu, M. et al. 2019 The naval battle of actium and the myth of the ship-holder: the effect of bathymetry. In 5th MASHCON – International Conference on Ship Manoeuvring in Shallow and Confined Water, with non-exclusive focus on manoeuvring in waves, wind and current, pp. 104133. Flanders Hydraulics Research; Maritime Technology Division, Ghent University.Google Scholar
Gotman, A. S. 2002 Study of Michell’s integral and influence of viscosity and ship hull form on wave resistance. Ocean. Engng Intl 6 (2), 74115.Google Scholar
Havelock, T. H. 1919 Wave resistance: some cases of three-dimensional fluid motion. Proc. R. Soc. Lond. A 95 (670), 354365.Google Scholar
Havelock, T. H. 1932 The theory of wave resistance. Proc. R. Soc. Lond. A 138 (835), 339348.Google Scholar
Huan, J. & Modi, V. 1996 Design of minimum drag bodies in incompressible laminar flow. Inverse Problems Engng 3 (4), 233260.Google Scholar
Lazauskas, L. V.2009 Resistance, wave-making and wave-decay of thin ships, with emphasis on the effects of viscosity. PhD thesis, The University of Adelaide.Google Scholar
Maynord, S. T. 2005 Wave height from planing and semi-planing small boats. River Res. Appl. 21 (1), 117.Google Scholar
Menter, F. R. 1994 Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32 (8), 15981605.Google Scholar
Michell, J. H. 1898 XI. The wave-resistance of a ship. Lond. Edinb. Dubl. Phil. Mag. J. Sci. 45 (272), 106123.Google Scholar
Newman, J. N. 2018 Marine Hydrodynamics. MIT Press.Google Scholar
Nocedal, J. & Wright, S. J. 2006 Numerical Optimization, 2nd edn. Springer.Google Scholar
Pethiyagoda, R., McCue, S. W. & Moroney, T. J. 2017 Spectrograms of ship wakes: identifying linear and nonlinear wave signals. J. Fluid Mech. 811, 189209.Google Scholar
Rabaud, M. & Moisy, F. 2014 Narrow ship wakes and wave drag for planing hulls. Ocean Engng 90, 3438.Google Scholar
Schlichting, H., Gersten, K., Krause, E., Oertel, H. & Mayes, K. 1960 Boundary-Layer Theory. Springer.Google Scholar
Stack, J. & Von Doenhoff, A. E. 1934 Tests of 16 Related Airfoils at High Speeds. NACA.Google Scholar
Theodorakakos, A. & Bergeles, G. 2004 Simulation of sharp gas–liquid interface using VOF method and adaptive grid local refinement around the interface. Intl J. Numer. Meth. Fluids 45 (4), 421439.Google Scholar
Tuck, E. O. 1989 The wave resistance formula of J. H. Michell (1898) and its significance to recent research in ship hydrodynamics. ANZIAM J. 30 (4), 365377.Google Scholar
Ubbink, O.1997 Numerical prediction of two fluid systems with sharp interfaces. PhD thesis, Imperial College London.Google Scholar
Videler, J. J. 2012 Fish Swimming. Springer.Google Scholar
Wächter, A. & Biegler, L. T. 2006 On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math. Progr. 106 (1), 2557.Google Scholar
Zakerdoost, H., Ghassemi, H. & Ghiasi, M. 2013 Ship hull form optimization by evolutionary algorithm in order to diminish the drag. J. Marine Sci. Appl. 12 (2), 170179.Google Scholar
Zhao, Y., Zong, Z. & Zou, L. 2015 Ship hull optimization based on wave resistance using wavelet method. J. Hydrodyn. 27 (2), 216222.Google Scholar