Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T03:46:34.879Z Has data issue: false hasContentIssue false

Wall shear stress caused by small amplitude perturbations of turbulent boundary-layer flow: an experimental investigation

Published online by Cambridge University Press:  12 April 2006

D. Ronneberger
Affiliation:
Drittes Physikalisches Institut, Universität Göttingen, Germany
C. D. Ahrens
Affiliation:
Drittes Physikalisches Institut, Universität Göttingen, Germany

Abstract

The oscillation of the wall shear stress caused by imposing sound on a turbulent boundary-layer flow constitutes a boundary condition for the solution of the acoustic wave equation. The no-slip condition at the wall requires the excitation of a shear wave which is superimposed on the sound wave. The shear wave propagates into the turbulent medium. The wall impedance (shear stress/velocity) of streamwise polarized shear waves has been measured in two different ways, namely (a) by evaluating the phase velocity and the attenuation of a plane sound, wave which propagates in turbulent pipe flow, and (b) by evaluating the resonance frequency and the quality factor of a longitudinally vibrating glass pipe which carries turbulent flow. The results, which were obtained over a wide range of Strouhal numbers, exhibit very good agreement between the two measuring methods. The wall shear stress impedance is strongly affected by the turbulence. This indicates that the turbulent shear stress is modulated by the shear wave. At all measuring conditions, the propagation of the shear wave was confined essentially to the inner portion of the turbulent boundary layer. In principle, two different Strouhal numbers, based on inner and outer variables respectively, describe the dynamics of the Reynolds stress, even in the inner layer (Laufer & Badri Narayanan 1971). However, it turns out that the outer Strouhal number (based on the diameter and the centre-line velocity) has no noticeable effect on the wall shear stress impedance. The dependence of the impedance on the inner Strouhal number (based on the friction velocity and the viscosity) reveals that the shear wave is strongly reflected at the edge of the viscous sublayer. It is concluded that the stress-to-strain ratio at the edge of the viscous sublayer corresponds either to a viscoelastic medium or even to a medium with negative viscosity.

Type
Research Article
Copyright
© 1977 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Acharya, M. & Reynolds, W. C. 1975 Measurements and predictions of a fully developed turbulent channel flow with imposed controlled oscillations. Dept. Mech. Engng, Stanford Univ. Rep. TF-8.Google Scholar
Ahrens, C. 1973 Wechselwirkung zwischen Zähigkeitswellen und wandnaher Turbulenz in Wasser mit und ohne Zusatz einer reibungsvermindernden Substanz. Ph.D. dissertation, Math.-Nat. Fakultät Universität Göttingen.
Ahrens, C. & Ronneberger, D. 1971 Luftschalldämpfung in turbulent durchströmten, schallharten Rohren bei verschiedenen Wandrauhigkeiten. Acustica 25, 150.Google Scholar
Bark, F. H., Hinch, E. J. & Landahl, M. T. 1975 Drag reduction in turbulent flow due to additives: a report on Euromech 52. J. Fluid Mech. 68, 129.Google Scholar
Brocher, E. 1977 Oscillatory flows in ducts: a report on Euromech 73. J. Fluid Mech. 79, 113.Google Scholar
Cebeci, T. 1973 A model for eddy conductivity and turbulent Prandtl number. J. Heat Transfer 95, 227.Google Scholar
Davis, R. E. 1972 On prediction of the turbulent flow over a wavy boundary. J. Fluid Mech. 52, 287.Google Scholar
Davis, R. E. 1974 Perturbed turbulent flow, eddy viscosity and the generation of turbulent stresses. J. Fluid Mech. 63, 673.Google Scholar
Driest, E. R. Van 1956 On turbulent flow near a wall. J. Aero. Sci. 23, 1007.Google Scholar
Eckelmann, H. 1970 Experimentelle Untersuchungen in einer turbulenten Kanalströmung mit starken viskosen Wandschichten. Mitt. MPI Strömungsforsch. AVA Göttingen no. 48.Google Scholar
Eichelbrenner, E. A. (ed.) 1971 Recent Research on Unsteady Boundary Layers. IUTAM Symp. Laval University Press.
Hussain, A. K. M. F. & Reynolds, W. C. 1970a The mechanics of a perturbation wave in turbulent shear flow. Dept. Mech. Engng Stanford Univ. Rep. FM-6.Google Scholar
Hussain, A. K. M. F. & Reynolds, W. C. 1970b The mechanics of an organized wave in turbulent shear flow. J. Fluid Mech. 41, 241.Google Scholar
Hussain, A. K. M. F. & Reynolds, W. C. 1972 The mechanics of an organized wave in turbulent shear flow. Part 2. Experimental results. J. Fluid Mech. 54, 241.Google Scholar
Karlsson, S. K. F. 1958 An unsteady turbulent boundary layer. J. Fluid Mech. 5, 622.Google Scholar
Kendall, J. M. 1970 The turbulent boundary layer over a wall with progressive surface waves. J. Fluid Mech. 14, 385.Google Scholar
Kline, S. J., Reynolds, W. C., Schraub, F. A. & Runstadler, P. W. 1967 The structure of turbulent boundary layers. J. Fluid Mech. 30, 741.Google Scholar
Landahl, M. T. 1967 A wave guide model for turbulent shear flow. J. Fluid Mech. 29, 441.Google Scholar
Laufer, J. & Badri Narayanan, M. A. 1971 Mean period of the turbulent production mechanism in a boundary layer. Phys. Fluids 14, 182.Google Scholar
Ludwieg, H. 1956 Bestimmung des Verhältnisses der Austauschkoeffizienten für Wärme und Impuls bei turbulenten Grenzschichten. Z. Flugwiss. 4, 73.Google Scholar
Norris, H. L. & Reynolds, W. C. 1975 Turbulent channel flow with a moving wavy boundary. Dept. Mech. Engng, Stanford Univ. Rep. TF-7.Google Scholar
Rao, K. N., Narasimha, R. & Badri Narayanan, M. A. 1971 The ‘bursting’ phenomenon in a turbulent boundary layer. J. Fluid Mech. 48, 339.Google Scholar
Reichardt, H. 1951 Vollständige Darstellung der turbulenten Geschwindigkeitsverteilung in glatten Leitungen. Z. angew. Math. Mech. 31, 208.Google Scholar
Reynolds, W. C. & Hussain, A. K. M. F. 1972 The mechanics of an organized wave in turbulent shear flow. Part 3. Theoretical models and comparisons with experiments. J. Fluid Mech. 54, 263.Google Scholar
Ronneberger, D. 1975 Genaue Messung der Schalldämpfung und der Phasengeschwindigkeit in durchströmten Rohren im Hinblick auf die Wechselwirkung zwischen Schall und Turbulenz. Habilitationsschrift Math. Nat. Fak. Univ. Göttingen.
Stewart, R. H. 1970 Laboratory studies of the velocity field of deep-water waves. J. Fluid Mech. 42, 733.Google Scholar
Vasiliev, O. F. & Kvon, V. I. 1971 Unsteady turbulent shear flow in a pipe. In Recent Research on Unsteady Boundary Layers. IUTAM Symp. (ed. E. A. Eichelbrenner), p. 2028. Laval University Press.
Whitsitt, N. F., Harrington, L. J. & Crawford, H. R. 1969 Effect of wall shear stress on drag reduction of viscoelastic solutions. In Viscous Drag Reduction (ed. C. S. Wells), p. 265.