Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T11:45:37.222Z Has data issue: false hasContentIssue false

Vortical–acoustic resonance in an acoustic resonator: Strouhal number variation, destabilization and stabilization

Published online by Cambridge University Press:  26 May 2021

Xiwen Dai*
Affiliation:
School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai200240, PR China
*
Email address for correspondence: xiwen.dai@sjtu.edu.cn

Abstract

The impact of acoustic resonance on vortical–acoustic resonance and flow instability is studied by a combined travelling–global mode analysis about a low-speed inviscid parallel shear flow in two-dimensional symmetric duct–cavity configurations. First, in a shallow-cavity case, we show that the difference between incompressible and compressible models in describing the compact feedback loop, consisting of the Kelvin–Helmholtz (KH) instability wave and the Rayleigh–Powell–Rossiter (RPR) feedback, is small and the global mode frequency follows the Strouhal law. Using the compact case as a baseline for comparison, the influence of an acoustic resonator (AR) on the $\textrm {KH}+\textrm {RPR}$ feedback loop is then examined. In this deep-cavity case, phenomena such as frequency deviation from the Strouhal law, global mode switching, global mode destabilization and stabilization, caused by a trapped or a heavily damped acoustic resonant mode, are observed. We show that those phenomena can be explained by the local–global relation of the feedback loop and the dual-feedback view: the coexistence of RPR and AR feedbacks. The Strouhal number variation is due to the phase difference of the unstable vortical wave between the upstream and downstream cavity edges being changed by the additional AR feedback. It is found that the switching is not a vortical but an acoustic effect. The destabilization and stabilization, near and far from an acoustic resonance, are respectively understood as the result of the total feedback at the upstream edge being strengthened and weakened by the AR feedback.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alvarez, J.O. & Kerschen, E.J. 2005 Influence of wind tunnel walls on cavity acoustic resonances. AIAA Paper 2005-2804.CrossRefGoogle Scholar
Alvarez, J.O., Kerschen, E.J. & Tumin, A. 2004 A theoretical model for cavity acoustic resonances in subsonic flow. AIAA Paper 2004-2845.CrossRefGoogle Scholar
Barbagallo, A., Sipp, D. & Schmid, P. 2009 Closed-loop control of an open cavity flow using reduced order models. J. Fluid Mech. 641, 150.CrossRefGoogle Scholar
Bauerheim, M., Boujo, E. & Noiray, N. 2020 Numerical analysis of the linear and nonlinear vortex-sound interaction in a T-junction. AIAA Paper 2020-2569.CrossRefGoogle Scholar
Blake, W.K. & Powell, A. 1986 The development of contemporary views of flow-tone generation. In Recent Advances in Aeroacoustics, pp. 247–345, Springer.CrossRefGoogle Scholar
Boujo, E., Bauerheim, M. & Noiray, N. 2018 Saturation of a turbulent mixing layer over a cavity: response to harmonic forcing around mean flows. J. Fluid Mech. 853, 386418.CrossRefGoogle Scholar
Bruggeman, J.C., Hirschberg, A., van Dongen, M.E.H. & Wijnands, A.P.J. 1991 Self-sustained aero-acoustic pulsations in gas transport systems: experimental study of the influence of closed side branches. J. Sound Vib. 151, 371393.CrossRefGoogle Scholar
Crighton, D. 1992 The jet edge-tone feedback cycle; linear theory for the operating stages. J. Fluid Mech. 234, 361391.CrossRefGoogle Scholar
Dai, X. 2020 Flow–acoustic resonance in a cavity covered by a perforated plate. J. Fluid Mech. 884, A4.CrossRefGoogle Scholar
Dai, X. & Aurégan, Y. 2018 A cavity-by-cavity description of the aeroacoustic instability over a liner with a grazing flow. J. Fluid Mech. 825, 126145.CrossRefGoogle Scholar
Dai, X., Jing, X. & Sun, X. 2015 Flow-excited acoustic resonance of a Helmholtz resonator: discrete vortex model compared to experiments. Phys. Fluids 27, 057102.CrossRefGoogle Scholar
Doaré, O. 2001 Instabilités locales et globales en interaction fluide–structure. PhD thesis, École Polytechnique.Google Scholar
Doaré, O. & de Langre, E. 2006 The role of boundary conditions in the instability of one-dimensional systems. Eur. J. Mech. (B/Fluids) 25, 948959.CrossRefGoogle Scholar
East, L.F. 1966 Aerodynamically induced resonance in rectangular cavities. J. Sound Vib. 3, 277287.CrossRefGoogle Scholar
Edgington-Mitchell, D. 2019 Aeroacoustic resonance and self-excitation in screeching and impinging supersonic jets–a review. Intl J. Aeroacoust. 18, 118188.CrossRefGoogle Scholar
Evans, D.V., Levitin, M. & Vassiliev, D. 1994 Existence theorems for trapped modes. J. Fluid Mech. 261, 2131.CrossRefGoogle Scholar
Evans, D.V. & Linton, C.M. 1991 Trapped modes in open channels. J. Fluid Mech. 225, 153175.CrossRefGoogle Scholar
Evans, D.V. & Porter, R. 1997 Trapped modes about multiple cylinders in a channel. J. Fluid Mech. 339, 331356.CrossRefGoogle Scholar
Fabre, B. & Hirschberg, A. 2000 Physical modeling of flue instruments: a review of lumped models. Acustica 86, 599610.Google Scholar
Ffowcs-Williams, J.E. 1969 Hydrodynamic noise. Annu. Rev. Fluid Mech. 1, 197222.CrossRefGoogle Scholar
Fosas de Pando, M., Schmid, P.J. & Sipp, D. 2014 A global analysis of tonal noise in flows around aerofoils. J. Fluid Mech. 754, 538.CrossRefGoogle Scholar
Gallaire, F. & Chomaz, J.-M. 2004 The role of boundary conditions in a simple model of incipient vortex breakdown. Phys. Fluids 16, 274.CrossRefGoogle Scholar
Gharib, M. & Roshko, A. 1987 The effect of flow oscillations on cavity drag. J. Fluid Mech. 177, 501530.CrossRefGoogle Scholar
Gloerfelt, X. 2009 Cavity Noise, von Kármán Lecture Notes on Aerodynamic Noise from Wall-bounded Flows. von Kármán Institute for Fluid Dynamics.Google Scholar
Gojon, R., Bogey, C. & Marsden, O. 2016 Investigation of tone generation in ideally expanded supersonic planar impinging jets using large-eddy simulation. J. Fluid Mech. 808, 90115.CrossRefGoogle Scholar
Goldstein, M.E. 1978 Unsteady vortical and entropic distortions of potential flows round arbitrary obstacles. J. Fluid Mech. 89, 443468.CrossRefGoogle Scholar
Hein, S., Hohage, T. & Koch, W. 2004 On resonances in open systems. J. Fluid Mech. 506, 255284.CrossRefGoogle Scholar
Hein, S., Koch, W. & Nannen, L. 2012 Trapped modes and fano resonances in two-dimensional acoustical duct–cavity systems. J. Fluid Mech. 692, 257287.CrossRefGoogle Scholar
Hellmich, B. & Seume, J.R. 2008 Causes of acoustic resonance in a high-speed axial compressor. Trans. ASME J. Turbomach. 130, 031003.CrossRefGoogle Scholar
Ho, C.M. & Huerre, P. 1984 Perturbed free shear layers. Annu. Rev. Fluid Mech. 16, 365424.CrossRefGoogle Scholar
Howe, M.S. 1997 Edge, cavity and aperture tones at very low Mach numbers. J. Fluid Mech. 330, 6184.CrossRefGoogle Scholar
Jensen, F.B., Kuperman, W.A., Porter, M.B. & Schmidt, H. 2011 Computational Ocean Acoustics, chap. 2 & 5. Springer.CrossRefGoogle Scholar
Jordan, P., Jaunet, V., Towne, A., Cavalieri, A.V.G., Colonius, T., Schmidt, O. & Agarwal, A. 2018 Jet–flap interaction tones. J. Fluid Mech. 853, 333358.CrossRefGoogle Scholar
Knisely, C. & Rockwell, D. 1982 Self-sustained low-frequency components in an impinging shear layer. J. Fluid Mech. 116, 157186.CrossRefGoogle Scholar
Koch, W. 2005 Acoustic resonances in rectangular open cavities. AIAA J. 43, 23422349.CrossRefGoogle Scholar
Koch, W. 2009 Acoustic resonances and trapped modes in annular plate cascades. J. Fluid Mech. 628, 155180.CrossRefGoogle Scholar
Kooijman, G., Hirschberg, A. & Aurégan, Y. 2010 Influence of mean flow profile and geometrical ratios on scattering of sound at a sudden area expansion in a duct. J. Sound Vib. 329, 607626.CrossRefGoogle Scholar
Kooijman, G., Testud, P., Aurégan, Y. & Hirschberg, A. 2008 Multimodal method for scattering of sound at a sudden area expansion in a duct with subsonic flow. J. Sound Vib. 310, 902922.CrossRefGoogle Scholar
Kook, H. & Mongeau, L. 2002 Analysis of the periodic pressure fluctuations induced by flow over a cavity. J. Sound Vib. 251, 823846.CrossRefGoogle Scholar
Kriesels, P.C., Peters, M.C.A.M., Hirschberg, A., Wijnands, A.P.J., Iafrati, A., Riccardi, G., Piva, R. & Bruggeman, J.C. 1995 High amplitude vortex-induced pulsations in a gas transport system. J. Sound Vib. 184, 343368.CrossRefGoogle Scholar
Landau, L.D. & Lifshitz, E.M. 1981 Physical Kinetics, pp. 281283. Pergamon.Google Scholar
de Langre, E. 2006 Frequency lock-in is caused by coupled-mode flutter. J. Fluids Struct. 22, 783791.CrossRefGoogle Scholar
de Lasson, J.R., Kristensen, P.T., Mørk, J. & Gregersen, N. 2014 Roundtrip matrix method for calculating the leaky resonant modes of open nanophotonic structures. J. Opt. Soc. Am. 31, 21422152.CrossRefGoogle ScholarPubMed
Ma, R., Slaboch, P.E. & Morris, S.C. 2009 Fluid mechanics of the flow-excited Helmholtz resonator. J. Fluid Mech. 623, 126.CrossRefGoogle Scholar
Martini, E., Cavalieri, A.V.G. & Jordan, P. 2019 Acoustic modes in jet and wake stability. J. Fluid Mech. 867, 804834.CrossRefGoogle Scholar
Marx, D. & Aurégan, Y. 2013 Effect of turbulent eddy viscosity on the unstable surface mode above an acoustic liner. J. Sound Vib. 332, 38033820.CrossRefGoogle Scholar
Méry, F. 2010 Instabilités linéaires et rayonnement acoustique d'un écoulement sur une paroi présentant une cavité. PhD thesis, Université de Toulouse.Google Scholar
Michalke, A. 1965 On spatially growing disturbances in an inviscid shear layer. J. Fluid Mech. 23, 521544.CrossRefGoogle Scholar
Miles, J.W. 1958 On the disturbed motion of a plane vortex sheet. J. Fluid Mech. 4 (5), 538552.CrossRefGoogle Scholar
Nakiboglu, G., Belfroid, S.P.C., Golliard, J. & Hirschberg, A. 2011 On the whistling corrugated pipes: effect of pipe length and flow profile. J. Fluid Mech. 672, 78108.CrossRefGoogle Scholar
Nakiboglu, G., Manders, H.B.M. & Hirschberg, A. 2012 Aeroacoustic power generated by a compact axisymmetric cavity: prediction of self-sustained oscillation and influence of the depth. J. Fluid Mech. 703, 163191.CrossRefGoogle Scholar
Nelson, P.A., Halliwell, N.A. & Doak, P.E. 1981 Fluid dynamics of a flow excited resonance. J. Sound Vib. 78, 1538.CrossRefGoogle Scholar
Oshkai, P. & Yan, T. 2008 Experimental investigation of coaxial side branch resonators. J. Fluids Struct. 24, 589603.CrossRefGoogle Scholar
Pagneux, V. 2013 Trapped modes and edge resonances in acoustics and elasticity. In Dynamic Localization Phenomena in Elasticity, Acoustics and Electromagnetism (ed. R.V. Craster & J. Kaplunov), pp. 181–223, Springer.CrossRefGoogle Scholar
Parker, R. 1966 Resonance effects in wake shedding from parallel plates: some experimental observations. J. Sound Vib. 4, 6272.CrossRefGoogle Scholar
Peters, M.C.A.M. 1993 Aeroacoustic sources in internal flows. PhD thesis, Technische Universiteit Eindhoven.Google Scholar
Powell, A. 1953 On edge tones and associated phenomena. Acoustics 3, 233243.Google Scholar
Powell, A. 1961 On the edgetone. J. Acoust. Soc. Am. 33, 395409.CrossRefGoogle Scholar
Powell, A. 1990 Some aspects of aeroacoustios: from Rayleigh until today. J. Vib. Acoust. 112, 145159.CrossRefGoogle Scholar
Powell, A. 1995 Lord Rayleigh's foundations of aeroacoustics. J. Acoust. Soc. Am. 98, 18391844.CrossRefGoogle Scholar
Rayleigh, Lord 1945 The Theory of Sound, vol. 2. Dover.Google Scholar
Rienstra, S.W. & Hirschberg, A. 2018 An Introduction to Acoustics. Eindhoven University of Technology.Google Scholar
Rockwell, D. & Naudascher, E. 1978 Review self-sustaining oscillations of flow past cavities. Trans. ASME J. Fluids Engng 100, 152.CrossRefGoogle Scholar
Rossiter, J.E. 1964 Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Aero. Res. Counc. R&M, No. 3438.Google Scholar
Rowley, C.W. & Williams, D.R. 2006 Dynamics and control of high-Reynolds-number flow over open cavities. Annu. Rev. Fluid Mech. 38, 251276.CrossRefGoogle Scholar
Rowley, C.W., Williams, D.R., Colonius, T., Murray, R.M. & Macmynowski, D.G. 2006 Linear models for control of cavity flow oscillations. J. Fluid Mech. 547, 317330.CrossRefGoogle Scholar
Schmid, P.J. & Henningson, D.S. 2001 Stability and Transition in Shear Flows. Springer.CrossRefGoogle Scholar
Sipp, D., Marquet, O., Meliga, P. & Barbagallo, A. 2010 Dynamics and control of global instabilities in open-flows: a linearized approach. Appl. Mech. Rev. 63, 030801.CrossRefGoogle Scholar
Stewart, P.S., Waters, S.L. & Jensen, O.E. 2009 Local and global instabilities of flow in a flexible-walled channel. Eur. J. Mech. (B/Fluids) 28, 541557.CrossRefGoogle Scholar
Stoneman, S.A.T., Hourigan, K., Stokes, A.N. & Welsh, M.C. 1988 Resonant sound caused by flow past two plates in tandem in a duct. J. Fluid Mech. 192, 455484.CrossRefGoogle Scholar
Tam, C.K.W. 1976 The acoustic modes of a two-dimensional rectangular cavity. J. Sound Vib. 49, 353364.CrossRefGoogle Scholar
Tam, C.K.W. & Block, P.J.W. 1978 On the tones and pressure oscillations induced by flow over rectangular cavities. J. Fluid Mech. 89, 373399.CrossRefGoogle Scholar
Tam, C.K.W. & Norum, T.D. 1992 Impingement tones of large aspect ratio supersonic rectangular jets. AIAA J. 30, 304311.CrossRefGoogle Scholar
Taira, K., Brunton, S.L., Dawson, S., Rowley, C.W., Colonius, T., McKeon, B.J., Schmidt, O.T., Gordeyev, S., Theofilis, V. & Ukeiley, L.S. 2017 Modal analysis of fluid flows: an overview. AIAA J. 55, 40134041.CrossRefGoogle Scholar
Theofilis, V. 2011 Global linear instability. Annu. Rev. Fluid Mech. 43, 319352.CrossRefGoogle Scholar
Tonon, D., Golliard, J., Hirschberg, A. & Ziada, S. 2011 Aeroacoustics of pipe systems with closed branches. Intl J. Aeroacoust. 10, 201276.CrossRefGoogle Scholar
Tuerke, F., Sciamarella, D., Pastur, L.R., Lusseyran, F. & Artana, G. 2015 Frequency-selection mechanism in incompressible open-cavity flows via reflected instability waves. Phys. Rev. E 91, 013005.CrossRefGoogle ScholarPubMed
Wang, P., Deng, Y. & Liu, Y. 2018 Vortex-excited acoustic resonance in channel with coaxial side-branches: vortex dynamics and aeroacoustic energy transfer. Phys. Fluids 30, 125104.CrossRefGoogle Scholar
Yamouni, S., Sipp, D. & Jacquin, L. 2013 Interaction between feedback aeroacoustic and acoustic resonance mechanisms in a cavity flow: a global stability analysis. J. Fluid Mech. 717, 134165.CrossRefGoogle Scholar
Ziada, S. & Shine, S. 1992 Self-excited resonances of two side branche in close proximity. J. Fluids Struct. 6, 583601.CrossRefGoogle Scholar