Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T22:32:33.536Z Has data issue: false hasContentIssue false

Vortex stretching and compression near the turbulent/non-turbulent interface in a planar jet

Published online by Cambridge University Press:  13 October 2014

Tomoaki Watanabe*
Affiliation:
Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan
Yasuhiko Sakai
Affiliation:
Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan
Kouji Nagata
Affiliation:
Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan
Yasumasa Ito
Affiliation:
Department of Mechanical Science and Engineering, Nagoya University, Nagoya 464-8603, Japan
Toshiyuki Hayase
Affiliation:
Institute of Fluid Science, Tohoku University, Sendai 980-8577, Japan
*
Email address for correspondence: watanabe.tomoaki@c.nagoya-u.jp

Abstract

Vortex stretching and compression, which cause enstrophy production by inviscid processes, are investigated near the turbulent/non-turbulent (T/NT) interface in a planar jet by using a direct numerical simulation (DNS). The enstrophy production is investigated by analysing the relationship among a vorticity vector, strain-rate eigenvectors and strain-rate eigenvalues. The statistics are calculated individually for three different interface orientations. The vorticity near the T/NT interface is oriented in the tangential direction to the interface. The enstrophy production is affected by the interface orientation because the intensity of vortex stretching depends on the interface orientation, and the alignment between the vorticity vector and the strain-rate eigenvectors is confined by the interface. The enstrophy production near the T/NT interface is analysed by considering the motion of turbulent fluid relative to that of the interface. The results show that the alignment between the interface and the strain-rate eigenvectors changes depending on the velocity field near the T/NT interface. When the turbulent fluid moves toward the T/NT interface, the enstrophy is generated by vortex stretching without being greatly affected by vortex compression. In contrast, when the turbulent fluid relatively moves away from the T/NT interface, large enstrophy reduction frequently occurs by vortex compression. Thus, it is shown that the velocity field near the T/NT interface affects the enstrophy production near the interface through the alignment between the vorticity and the strain-rate eigenvectors.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashurst, W. T., Kerstein, A. R., Kerr, R. M. & Gibson, C. H. 1987 Alignment of vorticity and scalar gradient with strain rate in simulated Navier–Stokes turbulence. Phys. Fluids 30 (8), 23432353.Google Scholar
Bisset, D. K., Hunt, J. C. R. & Rogers, M. M. 2002 The turbulent/non-turbulent interface bounding a far wake. J. Fluid Mech. 451, 383410.CrossRefGoogle Scholar
Blackburn, H. M., Mansour, N. N. & Cantwell, B. J. 1996 Topology of fine-scale motions in turbulent channel flow. J. Fluid Mech. 310, 269292.Google Scholar
Bradbury, L. J. S. 1965 The structure of a self-preserving turbulent plane jet. J. Fluid Mech. 23, 3164.Google Scholar
Buxton, O. R. H. & Ganapathisubramani, B. 2010 Amplification of enstrophy in the far field of an axisymmetric turbulent jet. J. Fluid Mech. 651, 483502.Google Scholar
Chauhan, K., Philip, J., de Silva, C. M., Hutchins, N. & Marusic, I. 2014 The turbulent/non-turbulent interface and entrainment in a boundary layer. J. Fluid Mech. 742, 119151.Google Scholar
Corrsin, S. & Kistler, A. L.1955 Free-stream boundaries of turbulent flows. NACA Tech. Rep. TN-1244.Google Scholar
Dai, Y., Kobayashi, T. & Taniguchi, N. 1994 Large eddy simulation of plane turbulent jet flow using a new outflow velocity boundary condition. JSME Intl J. B 37 (2), 242253.Google Scholar
Davidson, P. A. 2004 Turbulence: An Introduction for Scientists and Engineers. Oxford University Press.Google Scholar
Davies, A. E., Keffer, J. F. & Baines, W. D. 1975 Spread of a heated plane turbulent jet. Phys. Fluids 18 (7), 770775.Google Scholar
Deo, R. C., Mi, J. & Nathan, G. J. 2008 The influence of Reynolds number on a plane jet. Phys. Fluids 20 (7), 075108.Google Scholar
Gutmark, E. & Wygnanski, I. 1976 The planar turbulent jet. J. Fluid Mech. 73 (3), 465495.CrossRefGoogle Scholar
Holzner, M., Liberzon, A., Nikitin, N., Lüthi, B., Kinzelbach, W. & Tsinober, A. 2008 A Lagrangian investigation of the small-scale features of turbulent entrainment through particle tracking and direct numerical simulation. J. Fluid Mech. 598, 465475.Google Scholar
Holzner, M. & Lüthi, B. 2011 Laminar superlayer at the turbulence boundary. Phys. Rev. Lett. 106 (13), 134503.Google Scholar
Jiménez, J. 1992 Kinematic alignment effects in turbulent flows. Phys. Fluids A 4 (4), 652654.Google Scholar
Kempf, A., Klein, M. & Janicka, J. 2005 Efficient generation of initial- and inflow-conditions for transient turbulent flows in arbitrary geometries. Flow Turbul. Combust. 74 (1), 6784.Google Scholar
Klein, M., Sadiki, A. & Janicka, J. 2003 Investigation of the influence of the Reynolds number on a plane jet using direct numerical simulation. Intl J. Heat Fluid Flow 24 (6), 785794.CrossRefGoogle Scholar
Morinishi, Y., Lund, T. S., Vasilyev, O. V. & Moin, P. 1998 Fully conservative higher order finite difference schemes for incompressible flow. J. Comput. Phys. 143 (1), 90124.Google Scholar
Mungal, M. G. & Hollingsworth, D. K. 1989 Organized motion in a very high Reynolds number jet. Phys. Fluids A 1 (10), 16151623.Google Scholar
Ooi, A., Martin, J., Soria, J. & Chong, M. S. 1999 A study of the evolution and characteristics of the invariants of the velocity-gradient tensor in isotropic turbulence. J. Fluid Mech. 381, 141174.Google Scholar
Philip, J. & Marusic, I. 2012 Large-scale eddies and their role in entrainment in turbulent jets and wakes. Phys. Fluids 24 (5), 055108.Google Scholar
Philip, J., Meneveau, C., de Silva, C. M. & Marusic, I. 2014 Multiscale analysis of fluxes at the turbulent/non-turbulent interface in high Reynolds number boundary layers. Phys. Fluids 26 (1), 015105.CrossRefGoogle Scholar
Ramaprian, B. R. & Chandrasekhara, M. S. 1985 LDA measurements in plane turbulent jets. Trans. ASME: J. Fluids Engng 107 (2), 264271.Google Scholar
van Reeuwijk, M. & Holzner, M. 2014 The turbulence boundary of a temporal jet. J. Fluid Mech. 739, 254275.CrossRefGoogle Scholar
da Silva, C. B. & dos Reis, R. J. N. 2011 The role of coherent vortices near the turbulent/non-turbulent interface in a planar jet. Phil. Trans. R. Soc. Lond. A 369, 738753.Google Scholar
da Silva, C. B., Dos Reis, R. J. N. & Pereira, J. C. F. 2011 The intense vorticity structures near the turbulent/non-turbulent interface in a jet. J. Fluid Mech. 685, 165190.Google Scholar
da Silva, C. B., Hunt, J. C. R., Eames, I. & Westerweel, J. 2014 Interfacial layers between regions of different turbulence intensity. Annu. Rev. Fluid Mech. 46, 567590.Google Scholar
da Silva, C. B. & Pereira, J. C. F. 2004 The effect of subgrid-scale models on the vortices computed from large-eddy simulations. Phys. Fluids 16 (12), 45064534.Google Scholar
da Silva, C. B. & Pereira, J. C. F. 2008 Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Phys. Fluids 20 (5), 055101.Google Scholar
da Silva, C. B. & Taveira, R. R. 2010 The thickness of the turbulent/nonturbulent interface is equal to the radius of the large vorticity structures near the edge of the shear layer. Phys. Fluids 22 (12), 121702.CrossRefGoogle Scholar
de Silva, C. M., Philip, J., Chauhan, K., Meneveau, C. & Marusic, I. 2013 Multiscale geometry and scaling of the turbulent-nonturbulent interface in high Reynolds number boundary layers. Phys. Rev. Lett. 111 (4), 044501.Google Scholar
Soria, J., Sondergaard, R., Cantwell, B. J., Chong, M. S. & Perry, A. E. 1994 A study of the fine-scale motions of incompressible time-developing mixing layers. Phys. Fluids 6 (2), 871884.CrossRefGoogle Scholar
Spalart, P. R., Moser, R. D. & Rogers, M. M. 1991 Spectral methods for the Navier–Stokes equations with one infinite and two periodic directions. J. Comput. Phys. 96 (2), 297324.Google Scholar
Stanley, S. A., Sarkar, S. & Mellado, J. P. 2002 A study of the flow-field evolution and mixing in a planar turbulent jet using direct numerical simulation. J. Fluid Mech. 450, 377407.Google Scholar
Tanahashi, M., Iwase, S. & Miyauchi, T. 2001 Appearance and alignment with strain rate of coherent fine scale eddies in turbulent mixing layer. J. Turbul. 2 (6), 118.Google Scholar
Taveira, R. R., Diogo, J. S., Lopes, D. C. & da Silva, C. B. 2013 Lagrangian statistics across the turbulent–nonturbulent interface in a turbulent plane jet. Phys. Rev. E 88 (4), 043001.Google Scholar
Taveira, R. R. & da Silva, C. B. 2014 Characteristics of the viscous superlayer in shear free turbulence and in planar turbulent jets. Phys. Fluids 26 (2), 021702.Google Scholar
Townsend, A. A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Watanabe, T., Sakai, Y., Nagata, K., Ito, Y. & Hayase, T. 2014a Wavelet analysis of coherent vorticity near the turbulent/non-turbulent interface in a turbulent planar jet. Phys. Fluids 26 (9), 095105.Google Scholar
Watanabe, T., Sakai, Y., Nagata, K. & Terashima, O. 2013a Joint statistics between velocity and reactive scalar in a turbulent liquid jet with a chemical reaction. Phys. Scr. T155, 014039.Google Scholar
Watanabe, T., Sakai, Y., Nagata, K. & Terashima, O. 2014b Experimental study on the reaction rate of a second-order chemical reaction in a planar liquid jet. AIChE J. 60 (11), 39693988.Google Scholar
Watanabe, T., Sakai, Y., Nagata, K. & Terashima, O. 2014c Turbulent Schmidt number and eddy diffusivity change with a chemical reaction. J. Fluid Mech. 754, 98121.Google Scholar
Watanabe, T., Sakai, Y., Nagata, K., Terashima, O. & Kubo, T. 2012 Simultaneous measurements of reactive scalar and velocity in a planar liquid jet with a second-order chemical reaction. Exp. Fluids 53 (5), 13691383.Google Scholar
Watanabe, T., Sakai, Y., Nagata, K., Terashima, O., Suzuki, H., Hayase, T. & Ito, Y. 2013b Visualization of turbulent reactive jet by using direct numerical simulation. Intl J. Model. Simul. Sci. Comput. 4, 1341001.Google Scholar
Westerweel, J., Fukushima, C., Pedersen, J. M. & Hunt, J. C. R. 2005 Mechanics of the turbulent-nonturbulent interface of a jet. Phys. Rev. Lett. 95 (17), 174501.Google Scholar
Westerweel, J., Fukushima, C., Pedersen, J. M. & Hunt, J. C. R. 2009 Momentum and scalar transport at the turbulent/non-turbulent interface of a jet. J. Fluid Mech. 631, 199230.Google Scholar
Westerweel, J., Hofmann, T., Fukushima, C. & Hunt, J. C. R. 2002 The turbulent/non-turbulent interface at the outer boundary of a self-similar turbulent jet. Exp. Fluids 33 (6), 873878.Google Scholar
Wolf, M., Lüthi, B., Holzner, M., Krug, D., Kinzelbach, W. & Tsinober, A. 2012 Investigations on the local entrainment velocity in a turbulent jet. Phys. Fluids 24 (10), 105110.Google Scholar
Zhou, Y., Nagata, K., Sakai, Y., Suzuki, H., Ito, Y., Terashima, O. & Hayase, T. 2014 Development of turbulence behind the single square grid. Phys. Fluids 26 (4), 045102.Google Scholar