Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T01:26:58.068Z Has data issue: false hasContentIssue false

Viscous transfer of momentum across a shallow laminar flow

Published online by Cambridge University Press:  07 December 2021

O. Devauchelle*
Affiliation:
Université de Paris, Institut de physique du globe de Paris, CNRS, F-75238 Paris, France
P. Popović
Affiliation:
Université de Paris, Institut de physique du globe de Paris, CNRS, F-75238 Paris, France
E. Lajeunesse
Affiliation:
Université de Paris, Institut de physique du globe de Paris, CNRS, F-75238 Paris, France
*
Email address for correspondence: devauchelle@ipgp.fr

Abstract

In a shallow channel, the flow transfers most of its momentum vertically. Based on this observation, one often neglects the momentum that is transferred across the stream – the core assumption of the shallow-water theory. In the context of viscous flows, this approximation is referred to as the ‘lubrication theory’, in which one assumes that the shear stress exerted by the fluid on the substrate over which it flows is proportional to its velocity. Here, we revise this theory to account for the momentum that viscosity transfers across a shallow laminar flow, while keeping the problem low-dimensional. We then test the revised lubrication theory against analytical and numerical solutions of the exact problem. We find that, at a low computational cost, the present theory represents the actual flow more accurately than the classical lubrication approximation. This theoretical improvement, devised with laboratory rivers in mind, should also apply to other geophysical contexts, such as ice flows or forming lava domes.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abramian, A., Devauchelle, O. & Lajeunesse, E. 2019 a Streamwise streaks induced by bedload diffusion. J. Fluid Mech. 863, 601619.CrossRefGoogle Scholar
Abramian, A., Devauchelle, O. & Lajeunesse, E. 2020 Laboratory rivers adjust their shape to sediment transport. Phys. Rev. E 102, 053101.CrossRefGoogle ScholarPubMed
Abramian, A., Devauchelle, O., Seizilles, G. & Lajeunesse, E. 2019 b Boltzmann distribution of sediment transport. Phys. Rev. Lett. 123 (1), 014501.CrossRefGoogle ScholarPubMed
Audusse, E., Bristeau, M.-O., Perthame, B. & Sainte-Marie, J. 2011 A multilayer saint-venant system with mass exchanges for shallow water flows. Derivation and numerical validation. ESAIM: Math. Model. Numer. Anal. 45 (1), 169200.CrossRefGoogle Scholar
Beavers, G.S. & Joseph, D.D. 1967 Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30 (1), 197207.CrossRefGoogle Scholar
Benjamin, T.B. 1957 Wave formation in laminar flow down an inclined plane. J. Fluid Mech. 2 (6), 554573.CrossRefGoogle Scholar
Boussinesq, J. 1868 Mémoire sur l'influence des frottements dans les mouvements réguliers des fluides. J. Math. Pure. Appl. 13 (2), 377424.Google Scholar
Brown, G.O. 2002 The History of the Darcy-Weisbach Equation for Pipe Flow Resistance, pp. 34–43. ASCE.CrossRefGoogle Scholar
Chanson, H. 2012 Tidal Bores, Aegir, Eagre, Mascaret, Pororoca: Theory and Observations. World Scientific.Google Scholar
Charru, F. & Hinch, E.J. 2006 Ripple formation on a particle bed sheared by a viscous liquid. Part 1. Steady flow. J. Fluid Mech. 550, 111121.CrossRefGoogle Scholar
Chauvet, H., Devauchelle, O., Métivier, F., Lajeunesse, E. & Limare, A. 2014 Recirculation cells in a wide channel. Phys. Fluids 26 (1), 016604.CrossRefGoogle Scholar
Chézy, A. 1775 Mémoire sur la vitesse de l'eau conduite dans une rigole donnée. Dossier 847, 363368.Google Scholar
Craster, R.V. & Matar, O.K. 2009 Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81 (3), 11311198.CrossRefGoogle Scholar
De Vita, F., Lagrée, P.-Y., Chibbaro, S. & Popinet, S. 2020 Beyond shallow water: appraisal of a numerical approach to hydraulic jumps based upon the boundary layer theory. Eur. J. Mech. B/Fluids 79, 233246.CrossRefGoogle Scholar
Delestre, O., Cordier, S., Darboux, F., Du, M., James, F., Laguerre, C., Lucas, C. & Planchon, O. 2014 Fullswof: a software for overland flow simulation. In Advances in Hydroinformatics (ed. P. Gourbesville, J. Cunge & G. Caignaert), pp. 221–231. Springer.CrossRefGoogle Scholar
Devauchelle, O., Petroff, A.P., Lobkovsky, A.E. & Rothman, D.H. 2011 Longitudinal profile of channels cut by springs. J. Fluid Mech. 667, 3847.CrossRefGoogle Scholar
Gallagher, B.S. & Munk, W.H. 1971 Tides in shallow water: spectroscopy. Tellus 23 (4–5), 346363.CrossRefGoogle Scholar
Glover, R.E. & Florey, Q.L. 1951 Stable channel profiles. Tech. Rep. HYD-325. US Bur. Reclamation, Denver, CO, USA.Google Scholar
Goodwin, R. & Homsy, G.M. 1991 Viscous flow down a slope in the vicinity of a contact line. Phys. Fluids A 3 (4), 515528.CrossRefGoogle Scholar
Hecht, F. 2012 New development in freefem++. J. Numer. Math. 20 (3–4), 251265.CrossRefGoogle Scholar
Henderson, F.M. 1961 Stability of alluvial channels. J. Hydraul. Div. 87 (6), 109138.CrossRefGoogle Scholar
Huppert, H.E. 1982 Flow and instability of a viscous current down a slope. Nature 300 (5891), 427429.CrossRefGoogle Scholar
Huppert, H.E., Shepherd, J.B., Sigurdsson, R.H. & Sparks, S.J. 1982 On lava dome growth, with application to the 1979 lava extrusion of the soufriere of St. Vincent. J. Volcanol. Geotherm. Res. 14 (3–4), 199222.CrossRefGoogle Scholar
Kapitza, P.L. 1948 Wave flow of thin layer of viscous fluid (in Russian). Zh. Eksp. Teor. Fiz. 18, 328.Google Scholar
Kasmalkar, I., Mantelli, E. & Suckale, J. 2019 Spatial heterogeneity in subglacial drainage driven by till erosion. Proc. R. Soc. A 475 (2228), 20190259.CrossRefGoogle ScholarPubMed
Korteweg, D.J. & De Vries, G. 1895 XLI. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Lond. Edinb. Dublin Philos. Mag. J. Sci. 39 (240), 422443.CrossRefGoogle Scholar
Lacey, G. 1930 Stable channels in alluvium. In Minutes of the Proceedings of the Institution of Civil Engineers, vol. 229, pp. 259–292. Thomas Telford-ICE Virtual Library.CrossRefGoogle Scholar
Lauga, E. & Stone, H.A. 2003 Effective slip in pressure-driven Stokes flow. J. Fluid Mech. 489, 5577.CrossRefGoogle Scholar
Levich, B. & Landau, L. 1942 Dragging of a liquid by a moving plate. Acta Physicochim. USSR 17, 4254.Google Scholar
Lister, J.R. 1992 Viscous flows down an inclined plane from point and line sources. J. Fluid Mech. 242, 631653.CrossRefGoogle Scholar
Manning, R. 1891 On the flow of water in open channels and pipes. Trans. Inst. Civ. Engng 20, 161207.Google Scholar
Marche, F. 2007 Derivation of a new two-dimensional viscous shallow water model with varying topography, bottom friction and capillary effects. Eur. J. Mech. B/Fluids 26 (1), 4963.CrossRefGoogle Scholar
Métivier, F., Lajeunesse, E. & Devauchelle, O. 2017 Laboratory rivers: Lacey's law, threshold theory, and channel stability. Earth Surf. Dyn. 5 (1), 187198.CrossRefGoogle Scholar
Michaut, C. 2011 Dynamics of magmatic intrusions in the upper crust: theory and applications to laccoliths on earth and the moon. J. Geophys. Res. 116 (B5), B05205.CrossRefGoogle Scholar
Moffatt, H.K. 1964 Viscous and resistive eddies near a sharp corner. J. Fluid Mech. 18 (1), 118.CrossRefGoogle Scholar
Nezu, I., Nakagawa, H. & Jirka, G.H. 1994 Turbulence in open-channel flows. J. Hydraul. Engng 120 (10), 12351237.CrossRefGoogle Scholar
Parker, G. 1978 Self-formed straight rivers with equilibrium banks and mobile bed. Part 2. The gravel river. J. Fluid Mech. 89 (1), 127146.CrossRefGoogle Scholar
Phillips, C.B. & Jerolmack, D.J. 2019 Bankfull transport capacity and the threshold of motion in coarse-grained rivers. Water Resour. Res. 55 (12), 1131611330.CrossRefGoogle Scholar
Polubarinova-Kochina, P.I. 1962 Theory of Ground Water Movement. Princeton University Press.Google Scholar
Popinet, S. 2011 Quadtree-adaptive tsunami modelling. Ocean Dyn. 61 (9), 12611285.CrossRefGoogle Scholar
Ruyer-Quil, C. & Manneville, P. 2000 Improved modeling of flows down inclined planes. Eur. Phys. J. B 15 (2), 357369.CrossRefGoogle Scholar
Saffman, P.G. 1986 Viscous fingering in Hele-Shaw cells. J. Fluid Mech. 173, 7394.CrossRefGoogle Scholar
de Saint-Venant, A.J.C. 1871 Théorie du mouvement non permanent des eaux, avec application aux crues des rivières et a l'introduction de marées dans leurs lits. C. R. Acad. Sci. 36, 174–154.Google Scholar
Schoof, C. & Hewitt, I. 2013 Ice-sheet dynamics. Annu. Rev. Fluid Mech. 45, 217239.CrossRefGoogle Scholar
Schoof, C. & Mantelli, E. 2021 The role of sliding in ice stream formation. Proc. R. Soc. Lond. A 477 (2248), 20200870.Google Scholar
Seizilles, G., Devauchelle, O., Lajeunesse, E. & Métivier, F. 2013 Width of laminar laboratory rivers. Phys. Rev. E 87 (5), 052204.CrossRefGoogle ScholarPubMed
Snoeijer, J.H., Delon, G., Fermigier, M. & Andreotti, B. 2006 Avoided critical behavior in dynamically forced wetting. Phys. Rev. Lett. 96 (17), 174504174504.CrossRefGoogle ScholarPubMed
Snoeijer, J.H., Ziegler, J., Andreotti, B., Fermigier, M. & Eggers, J. 2008 Thick films of viscous fluid coating a plate withdrawn from a liquid reservoir. Phys. Rev. Lett. 100 (24), 244502.CrossRefGoogle ScholarPubMed
Stasiuk, M.V. & Jaupart, C. 1997 Lava flow shapes and dimensions as reflections of magma system conditions. J. Volcanol. Geotherm. Res. 78 (1–2), 3150.CrossRefGoogle Scholar
Stoker, J.J. 2011 Water Waves: The Mathematical Theory with Applications, vol. 36. John Wiley & Sons.Google Scholar
Suckale, J., Platt, J.D., Perol, T. & Rice, J.R. 2014 Deformation-induced melting in the margins of the West-Antarctic ice streams. J. Geophys. Res. 119 (5), 10041025.CrossRefGoogle Scholar
White, F.M. 1991 Viscous Fluid Flow, 2nd edn. Mechanical Engineering. McGraw-Hill.Google Scholar
Witten, T.A.J. & Sander, L.M. 1981 Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47 (19), 1400.CrossRefGoogle Scholar
Yih, C.-S. 1963 Stability of liquid flow down an inclined plane. Phys. Fluids 6 (3), 321334.CrossRefGoogle Scholar