Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T19:20:46.908Z Has data issue: false hasContentIssue false

The viscous catenary revisited: experiments and theory

Published online by Cambridge University Press:  31 July 2008

JOHN P. KOULAKIS
Affiliation:
Department of Physics, Pomona College, 610 N. College Ave., Claremont CA 91711, USA
CATALIN D. MITESCU
Affiliation:
Department of Physics, Pomona College, 610 N. College Ave., Claremont CA 91711, USA
FRANÇOISE BROCHARD-WYART
Affiliation:
Laboratoire PCC Institut Curie/CNRS UMR 168, 11 rue P. & M. Curie, 75231 Paris Cedex 05
ETIENNE GUYON
Affiliation:
École Supérieure de Physique et de Chimie Industrielles, Laboratoire PMMH/CNRS UMR 7636, 10 rue Vauquelin, 75231 Paris Cedex 05

Abstract

Detailed observations have been performed on the evolution of a viscous catenary, a rope of high-viscosity fluid suspended from two points falling under gravity. Stroboscopic imaging techniques are used to obtain the position and shape of the strand as a function of time. Depending on their initial thickness and profile, the filaments are observed to evolve into either a quasi-catenary, or other, more complex shapes. A conceptually simple, energy-based theory is developed and compared with observations. It is shown to describe reasonably, except for a scaling in the time scale, the catenary-like regime.

Type
Papers
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barnes, G. & Mackenzie, R. 1959 Height of fall versus frequency in liquid rope-coil effect. Am. J. Phys. 27, 112115.CrossRefGoogle Scholar
Barnes, G. & Woodcock, R. 1958 Liquid rope-coil effect. Am. J. Phys. 26, 205209.CrossRefGoogle Scholar
Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
Brochard-Wyart, F. & de Gennes, P.-G. 2007 The viscous catenary: a poor man's approach. Europhys. Lett. 80 (3), 36001.Google Scholar
Guyon, E., Hulin, J.-P., Petit, L. & Mitescu, C. D. 2001 Physical Hydrodynamics, pp. 329330. Oxford University Press.Google Scholar
Koulakis, J. P. 2006 The viscous catenary. Pomona College BA thesis available at http://ccdl.libraries.claremont.edu/cdm4/item_viewer.php?CISOROOT=/stc&CISOPTR=3.Google Scholar
Koulakis, J. P. & Mitescu, C. D. 2007 The viscous catenary. Phys. Fluids 19 (9), 091103.Google Scholar
Mahadevan, L., Ryu, W. S. & Samuel, A. D. T. 1998 Fluid ‘rope trick’ investigated. Nature 392, 140.Google Scholar
Mahadevan, L., Ryu, W. S. & Samuel, A. D. T. 2000 Correction: Fluid ‘rope trick’ investigated. Nature 403, 502.Google Scholar
Maleki, M., Habibi, M., Golestanian, R., Ribe, N. M. & Bonn, D. 2004 Liquid rope coiling on a solid surface. Phys. Rev. Lett. 93 (21), 214502.Google Scholar
Plateau, J. 1873 Statique des liquides soumis aux seules forces moléculaires. Gauthier-Villars.Google Scholar
Plateau, J. 1881 Quelques expériences sur les lames liquides minces. In Bull. Acad. R. Belgique, 7, 818.Google Scholar
Quintas, M., Brandao, T. R. S., Silva, C. L. M. & Cunha, R. L. 2006 Rheology of supersaturated sucrose solutions. J. Food Engng 77, 844852.Google Scholar
Rayleigh, Lord 1892 On the instability of a cylinder of viscous liquid under capillary force. Phil. Mag. 34 (145).Google Scholar
Ribe, N. M. 2003 Periodic folding of viscous sheets. Phys. Rev. E 68, 036305.Google Scholar
Ribe, N. M. 2004 Coiling of viscous jets. In Proc. R. Soc. Lond. A 460, 32233239.CrossRefGoogle Scholar
Rombauer, I. S., Becker, M. R. & Becker, E. 2006 Joy of Cooking, 75th edn, pp. 855857. Scribner.Google Scholar
Roy, A., Mahadevan, L. & Thiffeault, J.-L. 2006 Fall and rise of a viscoelastic filament. J. Fluid Mech. 563, 283292.Google Scholar
Stokes, G. G. 1845 On the theories of the internal friction of fluids in motion and of the equilibrium and motion of elastic solids. Trans. Camb. Phil. Soc. 8, 287347.Google Scholar
Taylor, G. I. 1968 Instability of jets, threads, and sheets of viscous fluid. In Proc. 12th Intl Congr. Appl. Mech. pp. 382388. Springer.Google Scholar
Teichman, J. & Mahadevan, L. 2003 The viscous catenary. J. Fluid Mech. 478, 7180.CrossRefGoogle Scholar
Tomaszewski, W., Pieranski, P. & Geminard, J.-C. 2006 The motion of a freely falling chain tip. Am. J. Phys. 74, 776783.Google Scholar
Trouton, F. T. 1906 On the coefficient of viscous traction and its relation to that of viscosity. In Proc. R. Soc Lond. A 77, 426440.Google Scholar
Zylstra, A. B. 2007 The dynamics of viscous filaments. Unpublished analysis of the results obtained in the summer of 2006 during his participation in the Pomona College Summer Undergraduate Research Program.Google Scholar