Hostname: page-component-5b777bbd6c-w9n4q Total loading time: 0 Render date: 2025-06-24T19:17:08.124Z Has data issue: false hasContentIssue false

Viscotaxis of chiral microswimmer in viscosity gradients

Published online by Cambridge University Press:  23 June 2025

Takuya Kobayashi*
Affiliation:
Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
Ryoichi Yamamoto*
Affiliation:
Department of Chemical Engineering, Kyoto University, Kyoto 615-8510, Japan
*
Corresponding authors: Takuya Kobayashi, kobayashi@cheme.kyoto-u.ac.jp; Ryoichi Yamamoto, ryoichi@cheme.kyoto-u.ac.jp
Corresponding authors: Takuya Kobayashi, kobayashi@cheme.kyoto-u.ac.jp; Ryoichi Yamamoto, ryoichi@cheme.kyoto-u.ac.jp

Abstract

Microswimmers display an intriguing ability to navigate through fluids with spatially varying viscosity, a behaviour known as viscotaxis, which plays a crucial role in guiding their motion. In this study, we reveal that the orientation dynamics of chiral squirmers in fluids with uniform viscosity gradients can be elegantly captured using the Landau–Lifshitz–Gilbert equations, originally developed for spin systems. Remarkably, we discover that chiral swimmers demonstrate negative viscotaxis, tracing spiral trajectories as they move. Specifically, a chiral squirmer with a misaligned source dipole and rotlet dipole exhibits a steady-state spiral motion – a stark contrast to the linear behaviour observed when the dipoles are aligned. This work provides fresh insights into the intricate interplay between microswimmer dynamics and fluid properties.

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Anderson, J.L. 1989 Colloid transport by interfacial forces. Annu. Rev. Fluid Mech. 21 (1), 6199.10.1146/annurev.fl.21.010189.000425CrossRefGoogle Scholar
Archer, R.J., Campbell, A.I. & Ebbens, S.J. 2015 Glancing angle metal evaporation synthesis of catalytic swimming Janus colloids with well defined angular velocity. Soft Matter 11 (34), 68726880.10.1039/C5SM01323BCrossRefGoogle ScholarPubMed
Ardekani, A.M., Doostmohammadi, A. & Desai, N. 2017 Transport of particles, drops, and small organisms in density stratified fluids. Phys. Rev. Fluids 2 (10), 100503.10.1103/PhysRevFluids.2.100503CrossRefGoogle Scholar
Bahat, A., Tur-Kaspa, I., Gakamsky, A., Giojalas, L.C., Breitbart, H. & Eisenbach, M. 2003 Thermotaxis of mammalian sperm cells: a potential navigation mechanism in the female genital tract. Nat. Med. 9 (2), 149150.10.1038/nm0203-149CrossRefGoogle Scholar
Baraban, L., Tasinkevych, M., Popescu, M.N., Sanchez, S., Dietrich, S. & Schmidt, O.G. 2011 Transport of cargo by catalytic Janus micro-motors. Soft Matter 8 (1), 4852.10.1039/C1SM06512BCrossRefGoogle Scholar
Bennett, R.R. & Golestanian, R. 2015 A steering mechanism for phototaxis in Chlamydomonas . J. R. Soc. Interface 12 (104), 20141164.10.1098/rsif.2014.1164CrossRefGoogle ScholarPubMed
Berg, H.C. & Anderson, R.A. 1973 Bacteria swim by rotating their flagellar filaments. Nature 245 (5425), 380382.10.1038/245380a0CrossRefGoogle ScholarPubMed
Berg, H.C. & Brown, D.A. 1972 Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking. Nature 239 (5374), 500504.10.1038/239500a0CrossRefGoogle ScholarPubMed
Bhuyan, T., Singh, A.K., Dutta, D., Unal, A., Ghosh, S.S. & Bandyopadhyay, D. 2017 Magnetic field guided chemotaxis of imushbots for targeted anticancer therapeutics. ACS Biomater. Sci. Engng 3 (8), 16271640.10.1021/acsbiomaterials.7b00086CrossRefGoogle ScholarPubMed
Bickel, T., Zecua, G. & Würger, A. 2014 Polarization of active Janus particles. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 89 (5), 050303.10.1103/PhysRevE.89.050303CrossRefGoogle ScholarPubMed
Binagia, J.P., Phoa, A., Housiadas, K.D. & Shaqfeh, E.S.G. 2020 Swimming with swirl in a viscoelastic fluid. J. Fluid Mech. 900, A4.10.1017/jfm.2020.456CrossRefGoogle Scholar
Blake, J.R. 1971 A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46 (1), 199208.10.1017/S002211207100048XCrossRefGoogle Scholar
Boymelgreen, A.M., Balli, T., Miloh, T. & Yossifon, G. 2018 Active colloids as mobile microelectrodes for unified label-free selective cargo transport. Nat. Commun. 9 (1), 760.10.1038/s41467-018-03086-2CrossRefGoogle ScholarPubMed
Bunea, A.‐I. & Glückstad, J. 2019 Strategies for optical trapping in biological samples: Aiming at microrobotic surgeons. Laser Photon. Rev. 13 (4), 1800227.10.1002/lpor.201800227CrossRefGoogle Scholar
Bunea, A.-I. & Taboryski, R. 2020 Recent advances in microswimmers for biomedical applications. Micromachines-BASEL 11 (12), 1048.10.3390/mi11121048CrossRefGoogle ScholarPubMed
Burada, P.S., Maity, R. & Jülicher, F. 2022 Hydrodynamics of chiral squirmers. Phys. Rev. E 105 (2-1), 024603.10.1103/PhysRevE.105.024603CrossRefGoogle ScholarPubMed
Campbell, A.I. & Ebbens, S.J. 2013 Gravitaxis in spherical janus swimming devices. Langmuir 29 (46), 1406614073.10.1021/la403450jCrossRefGoogle ScholarPubMed
Campbell, A.I., Wittkowski, R., Ten Hagen, B., Löwen, H. & Ebbens, S.J. 2017 Helical paths, gravitaxis, and separation phenomena for mass-anisotropic self-propelling colloids: experiment versus theory. J. Chem. Phys. 147 (8), 084905.10.1063/1.4998605CrossRefGoogle ScholarPubMed
Carenza, L.N., Gonnella, G., Marenduzzo, D. & Negro, G. 2019 Rotation and propulsion in 3D active chiral droplets. Proc. Natl Acad. Sci. USA 116 (44), 2206522070.10.1073/pnas.1910909116CrossRefGoogle ScholarPubMed
Constantino, M.A., Jabbarzadeh, M., Fu, H.C. & Bansil, R. 2016 Helical and rod-shaped bacteria swim in helical trajectories with little additional propulsion from helical shape. Sci. Adv. 2 (11), e1601661.10.1126/sciadv.1601661CrossRefGoogle ScholarPubMed
Coppola, S. & Kantsler, V. 2021 Green algae scatter off sharp viscosity gradients. Sci. Rep. 11 (1), 399.10.1038/s41598-020-79887-7CrossRefGoogle ScholarPubMed
Crenshaw, H.C. 1989 Kinematics of helical motion of microorganisms capable of motion with four degrees of freedom. Biophys. J. 56 (5), 10291035.10.1016/S0006-3495(89)82748-1CrossRefGoogle ScholarPubMed
Dai, B., Wang, J., Xiong, Z., Zhan, X., Dai, W., Li, C.-C., Feng, S.-P. & Tang, J. 2016 Programmable artificial phototactic microswimmer. Nat. Nanotechnol. 11 (12), 10871092.10.1038/nnano.2016.187CrossRefGoogle ScholarPubMed
Daniels, M., Longland, J.M. & Gilbart, J. 1980 Aspects of motility and chemotaxis in spiroplasmas. Microbiology 118 (2), 429436.10.1099/00221287-118-2-429CrossRefGoogle Scholar
Das, D. 2023 Flow field disturbance due to point viscosity variations in a heterogeneous fluid. Phys. Rev. Fluids 8 (5), L051301.10.1103/PhysRevFluids.8.L051301CrossRefGoogle Scholar
Datt, C. & Elfring, G.J. 2019 Active particles in viscosity gradients. Phys. Rev. Lett. 123 (15), 158006.10.1103/PhysRevLett.123.158006CrossRefGoogle ScholarPubMed
Eisenbach, M. 1999 Mammalian sperm chemotaxis and its association with capacitation. Dev. Genet. 25 (2), 8794.10.1002/(SICI)1520-6408(1999)25:2<87::AID-DVG2>3.0.CO;2-43.0.CO;2-4>CrossRefGoogle ScholarPubMed
Eisenbach, M. & Giojalas, L.C. 2006 Sperm guidance in mammals - an unpaved road to the egg. Nat. Rev. Mol. Cell Biol. 7 (4), 276285.10.1038/nrm1893CrossRefGoogle ScholarPubMed
Elfring, G.J. 2017 Force moments of an active particle in a complex fluid. J. Fluid Mech. 829, R3.10.1017/jfm.2017.632CrossRefGoogle Scholar
Esparza López, C., Gonzalez-Gutierrez, J., Solorio-Ordaz, F., Lauga, E. & Zenit, R. 2021 Dynamics of a helical swimmer crossing viscosity gradients. Phys. Rev. Fluids 6 (8), 083102.10.1103/PhysRevFluids.6.083102CrossRefGoogle Scholar
Fadda, F., Molina, J.J. & Yamamoto, R. 2020 Dynamics of a chiral swimmer sedimenting on a flat plate. Phys. Rev. E 101 (5-1), 052608.10.1103/PhysRevE.101.052608CrossRefGoogle ScholarPubMed
Feng, C., Molina, J.J., Turner, M.S. & Yamamoto, R. 2023 Dynamics of microswimmers near a liquid–liquid interface with viscosity difference. Phys. Fluids 35 (5), 051903.10.1063/5.0148008CrossRefGoogle Scholar
Friedrich, B.M. & Jülicher, F. 2009 Steering chiral swimmers along noisy helical paths. Phys. Rev. Lett. 103 (6), 068102.10.1103/PhysRevLett.103.068102CrossRefGoogle ScholarPubMed
Ghose, S. & Adhikari, R. 2014 Irreducible representations of oscillatory and swirling flows in active soft matter. Phys. Rev. Lett. 112 (11), 118102.10.1103/PhysRevLett.112.118102CrossRefGoogle ScholarPubMed
Ghosh, A. & Fischer, P. 2009 Controlled propulsion of artificial magnetic nanostructured propellers. Nano Lett. 9 (6), 22432245.10.1021/nl900186wCrossRefGoogle ScholarPubMed
Gilbert, T.L. 2004 A phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Magn. 40 (6), 34433449.10.1109/TMAG.2004.836740CrossRefGoogle Scholar
Giometto, A., Altermatt, F., Maritan, A., Stocker, R. & Rinaldo, A. 2015 Generalized receptor law governs phototaxis in the phytoplankton Euglena gracilis . Proc. Natl Acad. Sci. USA 112 (22), 70457050.10.1073/pnas.1422922112CrossRefGoogle ScholarPubMed
Gong, J., Shaik, V.A. & Elfring, G.J. 2023 Active particles crossing sharp viscosity gradients. Sci. Rep. 13 (1), 596.10.1038/s41598-023-27423-8CrossRefGoogle ScholarPubMed
Gong, J., Shaik, V.A. & Elfring, G.J. 2024 a Active spheroids in viscosity gradients. J. Fluid Mech. 984 (A26), A26.10.1017/jfm.2024.227CrossRefGoogle Scholar
Gong, J., Shaik, V.A. & Elfring, G.J. 2024 b Swimming efficiency in viscosity gradients. J. Fluid Mech. 998 (A2), A2.10.1017/jfm.2024.627CrossRefGoogle Scholar
ten Hagen, B., Kümmel, F., Wittkowski, R., Takagi, D., Löwen, H. & Bechinger, C. 2014 Gravitaxis of asymmetric self-propelled colloidal particles. Nat. Commun. 5 (1), 4829.10.1038/ncomms5829CrossRefGoogle ScholarPubMed
Hall-Stoodley, L., Costerton, J.W. & Stoodley, P. 2004 Bacterial biofilms: from the Natural environment to infectious diseases. Nat. Rev. Microbiol. 2 (2), 95108.10.1038/nrmicro821CrossRefGoogle ScholarPubMed
Hosaka, Y., Chatzittofi, M., Golestanian, R. & Vilfan, A. 2024 Chirotactic response of microswimmers in fluids with odd viscosity. Phys. Rev. Res. 6 (3), L032044.10.1103/PhysRevResearch.6.L032044CrossRefGoogle Scholar
Hosaka, Y., Golestanian, R. & Vilfan, A. 2023 Lorentz reciprocal theorem in fluids with odd viscosity. Phys. Rev. Lett. 131 (17), 178303.10.1103/PhysRevLett.131.178303CrossRefGoogle ScholarPubMed
Housiadas, K.D., Binagia, J.P. & Shaqfeh, E.S.G. 2021 Squirmers with swirl at low Weissenberg number. J. Fluid Mech. 911, A16.10.1017/jfm.2020.987CrossRefGoogle Scholar
Hyon Yunkyong, M., Powers, T.R., Stocker, R. & Fu, H.C. 2012 The wiggling trajectories of bacteria. J. Fluid Mech. 705, 5876.10.1017/jfm.2012.217CrossRefGoogle Scholar
Ishikawa, T. 2009 Suspension biomechanics of swimming microbes. J. R. Soc. Interface 6 (39), 815834.10.1098/rsif.2009.0223CrossRefGoogle ScholarPubMed
Ishikawa, T. 2024 Fluid dynamics of squirmers and ciliated microorganisms. Annu. Rev. Fluid Mech. 56 (1), 119145.10.1146/annurev-fluid-121021-042929CrossRefGoogle Scholar
Jékely, G., Colombelli, J., Hausen, H., Guy, K., Stelzer, E., Nédélec, F. & Arendt, D. 2008 Mechanism of phototaxis in marine zooplankton. Nature 456 (7220), 395399.10.1038/nature07590CrossRefGoogle ScholarPubMed
Kaiser, G.E. & Doetsch, R. 1975 Enhanced translational motion of Leptospira in viscous environments. Nature 255 (5510), 656657.10.1038/255656a0CrossRefGoogle ScholarPubMed
Keaveny, E.E. & Shelley, M.J. 2009 Hydrodynamic mobility of chiral colloidal aggregates. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 79 (5 Pt 1), 051405.10.1103/PhysRevE.79.051405CrossRefGoogle ScholarPubMed
Keaveny, E.E., Walker, S.W. & Shelley, M.J. 2013 Optimization of chiral structures for microscale propulsion. Nano Lett. 13 (2), 531537.10.1021/nl3040477CrossRefGoogle ScholarPubMed
Klumpp, S. & Faivre, D. 2016 Magnetotactic bacteria. Eur. Phys. J. Special Topics 225 (11), 21732188.10.1140/epjst/e2016-60055-yCrossRefGoogle Scholar
Kobayashi, T., Jung, G., Matsuoka, Y., Nakayama, Y., Molina, J.J. & Yamamoto, R. 2023 Direct numerical simulations of a microswimmer in a viscoelastic fluid. Soft Matter 19 (37), 71097121.10.1039/D3SM00600JCrossRefGoogle Scholar
Kobayashi, T., Molina, J.J. & Yamamoto, R. 2024 Propulsion of a chiral swimmer in viscoelastic fluids. Phys. Rev. Res. 6 (3), 033304.10.1103/PhysRevResearch.6.033304CrossRefGoogle Scholar
Kobayashi, T. & Yamamoto, R. 2024 Steady motions of single spherical microswimmers in non-Newtonian fluids. Phys. Fluids 36 (12), 121912.10.1063/5.0243291CrossRefGoogle Scholar
Kraft, D.J., Wittkowski, R., ten Hagen, B., Edmond, K.V., Pine, D.J. & Löwen, H. 2013 Brownian motion and the hydrodynamic friction tensor for colloidal particles of complex shape. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88 (5), 050301.10.1103/PhysRevE.88.050301CrossRefGoogle ScholarPubMed
Kurzthaler, C. et al. 2024 Characterization and control of the run-and-tumble dynamics of Escherichia coli . Phys. Rev. Lett. 132 (3), 038302.10.1103/PhysRevLett.132.038302CrossRefGoogle ScholarPubMed
Lakshmanan, M. 2011 The fascinating world of the Landau–Lifshitz–Gilbert equation: an overview. Phil. Trans. A Math. Phys. Engng Sci. 369 (1939), 12801300.Google ScholarPubMed
Lancia, F., Yamamoto, T., Ryabchun, A., Yamaguchi, T., Sano, M. & Katsonis, N. 2019 Reorientation behavior in the helical motility of light-responsive spiral droplets. Nat. Commun. 10 (1), 5238.10.1038/s41467-019-13201-6CrossRefGoogle ScholarPubMed
Lauga, E. 2016 Bacterial hydrodynamics. Annu. Rev. Fluid Mech. 48 (1), 105130.10.1146/annurev-fluid-122414-034606CrossRefGoogle Scholar
Lauga, E. 2020 the Fluid Dynamics of Cell Motility. Cambridge University Press.10.1017/9781316796047CrossRefGoogle Scholar
Lauga, E., DiLuzio, W.R., Whitesides, G.M. & Stone, H.A. 2006 Swimming in circles: motion of bacteria near solid boundaries. Biophys. J. 90 (2), 400412.10.1529/biophysj.105.069401CrossRefGoogle ScholarPubMed
Levis, D., Pagonabarraga, I. & Liebchen, B. 2019 Activity induced synchronization: mutual flocking and chiral self-sorting. Phys. Rev. Res. 1 (2), 023026.10.1103/PhysRevResearch.1.023026CrossRefGoogle Scholar
Li, Y., Zhao, Y., Huang, X., Lin, X., Guo, Y., Wang, D., Li, C., Wang, D. & Duan, S. 2013 Serotonin control of thermotaxis memory behavior in nematode caenorhabditis elegans. PLoS One 8 (11), e77779.10.1371/journal.pone.0077779CrossRefGoogle ScholarPubMed
Liebchen, B. & Levis, D. 2022 Chiral active matter. Europhys. Lett. 139 (6), 67001.10.1209/0295-5075/ac8f69CrossRefGoogle Scholar
Liebchen, B., Monderkamp, P., ten Hagen, B. & Löwen, H. 2018 Viscotaxis: microswimmer navigation in viscosity gradients. Phys. Rev. Lett. 120 (20), 208002.10.1103/PhysRevLett.120.208002CrossRefGoogle ScholarPubMed
Lighthill, M.J. 1952 On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Maths 5 (2), 109118.10.1002/cpa.3160050201CrossRefGoogle Scholar
Lisicki, M., Reigh, S.Y. & Lauga, E. 2018 Autophoretic motion in three dimensions. Soft Matter 14 (17), 33043314.10.1039/C8SM00194DCrossRefGoogle ScholarPubMed
Lluis González, D., Salinas Delgado, A.O. & Cabo Montes de Oca, A. 2022 Newton-like equations for a radiating particle: the nonrelativistic limit. Phys. Rev. D 105 (2), 025009.10.1103/PhysRevD.105.025009CrossRefGoogle Scholar
Löwen, H. 2016 Chirality in microswimmer motion: from circle swimmers to active turbulence. Eur. Phys. J. Special Topic. 225 (11), 23192331.10.1140/epjst/e2016-60054-6CrossRefGoogle Scholar
Lozano, C., ten Hagen, B., Löwen, H. & Bechinger, C. 2016 Phototaxis of synthetic microswimmers in optical landscapes. Nat. Commun. 7 (1), 12828.10.1038/ncomms12828CrossRefGoogle ScholarPubMed
Macnab, R.M. 1977 Bacterial flagella rotating in bundles: a study in helical geometry. Proc. Natl Acad. Sci. USA 74 (1), 221225.10.1073/pnas.74.1.221CrossRefGoogle ScholarPubMed
Maity, R. & Burada, P.S. 2019 A hydrodynamic-stochastic model of chemotactic ciliated microorganisms. Eur. Phys. J. E Soft Matter 42 (2), 20.10.1140/epje/i2019-11780-4CrossRefGoogle ScholarPubMed
Maity, R. & Burada, P.S. 2022 a Near- and far-field hydrodynamic interaction of two chiral squirmers. Phys Rev E 106 (5-1), 054613.10.1103/PhysRevE.106.054613CrossRefGoogle ScholarPubMed
Maity, R. & Burada, P.S. 2022 b Unsteady chiral swimmer and its response to a chemical gradient. J. Fluid Mech. 940, A13.10.1017/jfm.2022.239CrossRefGoogle Scholar
Maity, R. & Burada, P.S. 2023 Chemotaxis of two chiral squirmers. Phys. Fluids 35 (4), 043611.10.1063/5.0139016CrossRefGoogle Scholar
Masoud, H. & Stone, H.A. 2019 The reciprocal theorem in fluid dynamics and transport phenomena. J. Fluid Mech. 879, P1.10.1017/jfm.2019.553CrossRefGoogle Scholar
More, R.V. & Ardekani, A.M. 2023 Motion in stratified fluids. Annu. Rev. Fluid Mech. 55 (1), 157192.10.1146/annurev-fluid-120720-011132CrossRefGoogle Scholar
Morrow, S.M., Bissette, A.J. & Fletcher, S.P. 2017 Transmission of chirality through space and across length scales. Nat. Nanotechnol. 12 (5), 410419.10.1038/nnano.2017.62CrossRefGoogle ScholarPubMed
Namdeo, S., Khaderi, S.N. & Onck, P.R. 2014 Numerical modelling of chirality-induced bi-directional swimming of artificial flagella. Proc. Math. Phys. Engng Sci. 470 (2162), 20130547.Google ScholarPubMed
Nelson, B.J., Kaliakatsos, I.K. & Abbott, J.J. 2010 Microrobots for minimally invasive medicine. Annu. Rev. Biomed. Engng 12 (1), 5585.10.1146/annurev-bioeng-010510-103409CrossRefGoogle ScholarPubMed
Nganguia, H., Zheng, K., Chen, Y., Pak, O.S. & Zhu, L. 2020 A note on a swirling squirmer in a shear-thinning fluid. Phys. Fluids 32 (11), 111906.10.1063/5.0029068CrossRefGoogle Scholar
Oppenheimer, N., Navardi, S. & Stone, H.A. 2016 Motion of a hot particle in viscous fluids. Phys. Rev. Fluids 1 (1), 014001.10.1103/PhysRevFluids.1.014001CrossRefGoogle Scholar
Pak, O.S. & Lauga, E. 2014 Generalized squirming motion of a sphere. J. Engng Maths 88 (1), 128.10.1007/s10665-014-9690-9CrossRefGoogle Scholar
Patteson, A.E., Gopinath, A., Goulian, M. & Arratia, P.E. 2015 Running and tumbling with E. coli in polymeric solutions. Sci. Rep. 5 (1), 15761.10.1038/srep15761CrossRefGoogle Scholar
Pedley, T.J. 2016 Spherical squirmers: models for swimming micro-organisms. IMA J Appl Maths 81 (3), 488521.10.1093/imamat/hxw030CrossRefGoogle Scholar
Pedley, T.J., Brumley, D.R. & Goldstein, R.E. 2016 Squirmers with swirl: a model for Volvox swimming. J. Fluid Mech. 798, 165186.10.1017/jfm.2016.306CrossRefGoogle Scholar
Petrino, M.G. & Doetsch, R.N. 1978 ‘Viscotaxis’, a New Behavioural Response of Leptospira interrogans (biflexa) Strain b16. J. Gen. Microbiol. 109 (1), 113117.10.1099/00221287-109-1-113CrossRefGoogle ScholarPubMed
Purcell, E.M. 1977 Life at low Reynolds number. Am. J. Phys. 45 (1), 311.10.1119/1.10903CrossRefGoogle Scholar
van, R., Alexander, d.J., Arthur, M. & Prins, M.W.J. 2013 Accelerated particle-based target capture–the roles of volume transport and near-surface alignment. J. Phys. Chem. B 117 (5), 12101218.Google Scholar
Rossi, M., Cicconofri, G., Beran, A., Noselli, G. & DeSimone, A. 2017 Kinematics of flagellar swimming in euglena gracilis: helical trajectories and flagellar shapes. Proc. Natl Acad. Sci. USA 114 (50), 1308513090.10.1073/pnas.1708064114CrossRefGoogle ScholarPubMed
Rupprecht, J.-F., Waisbord, N., Ybert, C., Cottin-Bizonne, C. & Bocquet, L. 2016 Velocity condensation for magnetotactic bacteria. Phys. Rev. Lett. 116 (16), 168101.10.1103/PhysRevLett.116.168101CrossRefGoogle ScholarPubMed
Samatas, S. & Lintuvuori, J. 2023 Hydrodynamic synchronization of chiral microswimmers. Phys. Rev. Lett. 130 (2), 024001.10.1103/PhysRevLett.130.024001CrossRefGoogle ScholarPubMed
Shaik, V.A. & Elfring, G.J. 2021 Hydrodynamics of active particles in viscosity gradients. Phys. Rev. Fluids 6 (10), 103103.10.1103/PhysRevFluids.6.103103CrossRefGoogle Scholar
Shaik, V.A. & Elfring, G.J. 2024 Densitaxis: active particle motion in density gradients. Proc. Natl Acad. Sci. USA 121 (27), e2405466121.10.1073/pnas.2405466121CrossRefGoogle ScholarPubMed
Shaik, V.A., Gong, J. & J Elfring, G. 2024 Durotaxis in viscoelastic fluids. arXiv:2411.04226.Google Scholar
Sherman, M.Yu, Timkina, E.O. & Glagolev, A.N. 1982 Viscosity taxis in Escherichia coli . FEMS Microbiol. Lett. 13 (2), 137140.10.1111/j.1574-6968.1982.tb08243.xCrossRefGoogle Scholar
Shoele, K. & Eastham, P.S. 2018 Effects of nonuniform viscosity on ciliary locomotion. Phys. Rev. Fluids 3 (4), 043101.10.1103/PhysRevFluids.3.043101CrossRefGoogle Scholar
Srivastava, S.K., Medina-Sánchez, M., Koch, B. & Schmidt, O.G. 2016 Medibots: dual-action biogenic microdaggers for single-cell surgery and drug release. Adv. Mater. 28 (5), 832837.10.1002/adma.201504327CrossRefGoogle ScholarPubMed
Stehnach, M.R., Waisbord, N., Walkama, D.M. & Guasto, J.S. 2021 Viscophobic turning dictates microalgae transport in viscosity gradients. Nat. Phys. 17 (8), 926930.10.1038/s41567-021-01247-7CrossRefGoogle Scholar
Su, T.-W., Choi, I., Feng, J., Huang, K., McLeod, E. & Ozcan, A. 2013 Sperm trajectories form chiral ribbons. Sci. Rep. 3 (1), 1664.10.1038/srep01664CrossRefGoogle ScholarPubMed
Swidsinski, A., Sydora, B.C., Doerffel, Y., Loening-Baucke, V., Vaneechoutte, M., Lupicki, M., Scholze, J., Lochs, H. & Dieleman, L.A. 2007 Viscosity gradient within the mucus layer determines the mucosal barrier function and the spatial organization of the intestinal microbiota. Inflamm. Bowel Dis. 13 (8), 963970.10.1002/ibd.20163CrossRefGoogle ScholarPubMed
Takabe, K., Tahara, H., Islam, M.S., Affroze, S., Kudo, S. & Nakamura, S. 2017 Viscosity-dependent variations in the cell shape and swimming manner of Leptospira. Microbiology 163 (2), 153160.10.1099/mic.0.000420CrossRefGoogle ScholarPubMed
Tamura, M., Yanagawa, F., Sugiura, S., Takagi, T., Sumaru, K., Matsui, H. & Kanamori, T. 2014 Optical cell separation from three-dimensional environment in photodegradable hydrogels for pure culture techniques. Sci. Rep. 4 (1), 16.10.1038/srep04793CrossRefGoogle ScholarPubMed
Tjhung, E., Cates, M.E. & Marenduzzo, D. 2017 Contractile and chiral activities codetermine the helicity of swimming droplet trajectories. Proc. Natl Acad. Sci. USA 114 (18), 46314636.10.1073/pnas.1619960114CrossRefGoogle ScholarPubMed
Ventejou, B., Chaté, H., Montagne, R. & Shi, X.-Q. 2021 Susceptibility of orientationally ordered active matter to chirality disorder. Phys. Rev. Lett. 127 (23), 238001.10.1103/PhysRevLett.127.238001CrossRefGoogle ScholarPubMed
Vicsek, T., Czirók, A., Ben-Jacob, E., Cohen, I., I, & Shochet, O. 1995 Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75 (6), 12261229.10.1103/PhysRevLett.75.1226CrossRefGoogle Scholar
Waisbord, N., Lefèvre, C.T., Bocquet, L., Ybert, C. & Cottin-Bizonne, C. 2016 Destabilization of a flow focused suspension of magnetotactic bacteria. Phys. Rev. Fluids 1 (5), 053203.10.1103/PhysRevFluids.1.053203CrossRefGoogle Scholar
Wheeler, K.M., Cárcamo-Oyarce, G., Turner, B.S., Dellos-Nolan, S., Co, J.Y., Lehoux, S., Cummings, R.D., Wozniak, D.J. & Ribbeck, K. 2019 Mucin glycans attenuate the virulence of Pseudomonas aeruginosa in infection. Nat. Microbiol. 4 (12), 21462154.10.1038/s41564-019-0581-8CrossRefGoogle ScholarPubMed
Wolff, K., Hahn, A.M. & Stark, H. 2013 Sedimentation and polar order of active bottom-heavy particles. Eur. Phys. J. E Soft Matter 36 (4), 9858.10.1140/epje/i2013-13043-xCrossRefGoogle ScholarPubMed
Yamamoto, T. & Sano, M. 2017 Chirality-induced helical self-propulsion of cholesteric liquid crystal droplets. Soft Matter 13 (18), 33283333.10.1039/C7SM00337DCrossRefGoogle ScholarPubMed
Yamamoto, T. & Sano, M. 2018 Theoretical model of chirality-induced helical self-propulsion. Phys. Rev. E. 97 (1-1), 012607.10.1103/PhysRevE.97.012607CrossRefGoogle ScholarPubMed
Yang, J., Wolgemuth, C.W. & Huber, G. 2009 Kinematics of the Swimming of Spiroplasma . Phys. Rev. Lett. 102 (21), 218102.10.1103/PhysRevLett.102.218102CrossRefGoogle ScholarPubMed
Yashima, E., Ousaka, N., Taura, D., Shimomura, K., Ikai, T. & Maeda, K. 2016 Supramolecular helical systems: helical assemblies of small molecules, foldamers, and polymers with chiral amplification and their functions. Chem. Rev. 116 (22), 1375213990.10.1021/acs.chemrev.6b00354CrossRefGoogle ScholarPubMed
Zaferani, M. & Abbaspourrad, A. 2023 Biphasic chemokinesis of mammalian sperm. Phys. Rev. Lett. 130 (24), 248401.10.1103/PhysRevLett.130.248401CrossRefGoogle ScholarPubMed