Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T00:56:38.100Z Has data issue: false hasContentIssue false

Universal scaling of temperature variance in Rayleigh–Bénard convection near the transition to the ultimate state

Published online by Cambridge University Press:  22 November 2021

Xiaozhou He*
Affiliation:
School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, PR China Max Planck Institute for Dynamics and Self Organization, D-37073 Göttingen, Germany International Collaboration for Turbulence Research
Eberhard Bodenschatz
Affiliation:
Max Planck Institute for Dynamics and Self Organization, D-37073 Göttingen, Germany International Collaboration for Turbulence Research Institute for Nonlinear Dynamics, University of Göttingen, D-37073 Göttingen, Germany Laboratory of Atomic and Solid-State Physics and Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
Guenter Ahlers
Affiliation:
Max Planck Institute for Dynamics and Self Organization, D-37073 Göttingen, Germany International Collaboration for Turbulence Research Department of Physics, University of California, Santa Barbara, CA 93106, USA
*
Email address for correspondence: hexiaozhou@hit.edu.cn

Abstract

We report measurements of the temperature frequency spectra $P(\,f, z, r)$, the variance $\sigma ^2(z,r)$ and the Nusselt number $Nu$ in turbulent Rayleigh–Bénard convection (RBC) over the Rayleigh number range $4\times 10^{11} \underset{\smash{\scriptscriptstyle\thicksim}} { < } Ra \underset{\smash{\scriptscriptstyle\thicksim}} { < } 5\times 10^{15}$ and for a Prandtl number $Pr \simeq ~0.8$ ($z$ is the vertical distance from the bottom plate and $r$ is the radial position). Three RBC samples with diameter $D = 1.12$ m yet different aspect ratios $\varGamma \equiv D/L = 1.00$, $0.50$ and $0.33$ ($L$ is the sample height) were used. In each sample, the results for $\sigma ^2/\varDelta ^2$ ($\varDelta$ is the applied temperature difference) in the classical state over the range $0.018 \underset{\smash{\scriptscriptstyle\thicksim}} { < } z/L \underset{\smash{\scriptscriptstyle\thicksim}} { < } 0.5$ can be collapsed onto a single curve, independent of $Ra$, by normalizing the distance $z$ by the thermal boundary layer thickness $\lambda = L/(2 Nu)$. One can derive the equation $\sigma ^2/\varDelta ^2 = c_1\times \ln (z/\lambda )+c_2+c_3(z/\lambda )^{-0.5}$ from the observed $f^{-1}$ scaling of the temperature frequency spectrum. It fits the collapsed $\sigma ^2(z/\lambda )$ data in the classical state over the large range $20 \underset{\smash{\scriptscriptstyle\thicksim}} { < } z/\lambda \underset{\smash{\scriptscriptstyle\thicksim}} { < } 10^4$. In the ultimate state ($Ra \underset{\smash{\scriptscriptstyle\thicksim}} { > } Ra^*_2$) the data can be collapsed only when an adjustable parameter $\tilde \lambda = L/(2 \widetilde {Nu})$ is used to replace $\lambda$. The values of $\widetilde {Nu}$ are larger by about 10 % than the experimentally measured $Nu$ but follow the predicted $Ra$ dependence of $Nu$ for the ultimate RBC regime. The data for both the global heat transport and the local temperature fluctuations reveal the ultimate-state transitions at $Ra^*_2(\varGamma )$. They yield $Ra^*_2 \propto \varGamma ^{-3.0}$ in the studied $\varGamma$ range.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adrian, R.J. 1996 Variation of temperature and velocity fluctuations in turbulent thermal convection over horizontal surfaces. Intl J. Heat Mass Transfer 39, 23032310.CrossRefGoogle Scholar
Ahlers, G. 2009 Turbulent convection. Physics 2, 74.CrossRefGoogle Scholar
Ahlers, G., Bodenschatz, E., Funfschilling, D., Grossmann, S., He, X., Lohse, D., Stevens, R. & Verzicco, R. 2012 a Logarithmic temperature profiles in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 109, 114501.CrossRefGoogle ScholarPubMed
Ahlers, G., Bodenschatz, E. & He, X. 2014 Logarithmic temperature profiles of turbulent Rayleigh–Bénard convection in the classical and ultimate state for a Prandtl number of 0.8. J. Fluid Mech. 758, 436467.CrossRefGoogle Scholar
Ahlers, G., Funfschilling, D. & Bodenschatz, E. 2009 a Transitions in heat transport by turbulent convection at Rayleigh numbers up to $10^{15}$. New J. Phys. 11, 123001.CrossRefGoogle Scholar
Ahlers, G., Grossmann, S. & Lohse, D. 2009 b Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503538.CrossRefGoogle Scholar
Ahlers, G., He, X., Funfschilling, D. & Bodenschatz, E. 2012 b Heat transport by turbulent Rayleigh–Bénard convection for $Pr \simeq 0.8$ and $3\times 10^{12} \underset{\smash{\scriptscriptstyle\thicksim}} { < } Ra \underset{\smash{\scriptscriptstyle\thicksim}} { < } 10^{15}$: aspect ratio $\varGamma = 0.50$. New J. Phys. 14, 103012.CrossRefGoogle Scholar
Brown, E. & Ahlers, G. 2009 The origin of oscillations of the large-scale circulation of turbulent Rayleigh–Bénard convection. J. Fluid Mech. 638, 383400.CrossRefGoogle Scholar
Buell, J.C. & Catton, I. 1983 The effect of wall conduction on the stability of a fluid in a right circular-cylinder heated from below. Trans. ASME J. Heat Transfer 105, 255260.CrossRefGoogle Scholar
Busse, F.H. 1994 Convection driven zonal flows and vortices in the major planets. Chaos 4, 123134.CrossRefGoogle ScholarPubMed
Cardin, P. & Olson, P. 1994 Chaotic thermal convection in a rapidly rotating spherical shell: consequences for flow in the outer core. Phys. Earth Planet. Inter. 82, 235259.CrossRefGoogle Scholar
Castaing, B., Gunaratne, G., Heslot, F., Kadanoff, L., Libchaber, A., Thomae, S., Wu, X.Z., Zaleski, S. & Zanetti, G. 1989 Scaling of hard thermal turbulence in Rayleigh–Bénard convection. J. Fluid Mech. 204, 130.CrossRefGoogle Scholar
Charlson, G.S. & Sani, R.L. 1971 On thermoconvective instability in a bounded cylindrical fluid layer. Intl J. Heat Mass Transfer 14, 21572160.CrossRefGoogle Scholar
Chavanne, X., Chilla, F., Castaing, B., Hebral, B., Chabaud, B. & Chaussy, J. 1997 Observation of the ultimate regime in Rayleigh–Bénard convection. Phys. Rev. Lett. 79, 36483651.CrossRefGoogle Scholar
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35, 58.CrossRefGoogle ScholarPubMed
Corrsin, S. 1951 On the spectrum of isotropic temperature fluctuations in an isotropic turbulence. J. Appl. Phys. 22, 469.CrossRefGoogle Scholar
Deardorff, J.W. 1970 Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J. Atmos. Sci. 27, 12111213.2.0.CO;2>CrossRefGoogle Scholar
van Doorn, E., Dhruva, B., Sreenivasan, K.R. & Cassella, V. 2000 Statistics of wind direction and its increments. Phys. Fluids 12, 15291534.CrossRefGoogle Scholar
Emran, M.S. & Schumacher, J. 2008 Fine-scale statistics of temperature and its derivatives in convective turbulence. J. Fluid Mech. 611, 1334.CrossRefGoogle Scholar
Funfschilling, D. & Ahlers, G. 2004 Plume motion and large scale circulation in a cylindrical Rayleigh–Bénard cell. Phys. Rev. Lett. 92, 194502.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2001 Thermal convection for large Prandtl number. Phys. Rev. Lett. 86, 33163319.CrossRefGoogle Scholar
Grossmann, S. & Lohse, D. 2011 Multiple scaling in the ultimate regime of thermal convection. Phys. Fluids 23, 045108.CrossRefGoogle Scholar
He, X., Bodenschatz, E. & Ahlers, G. 2016 Azimuthal diffusion of the large-scale-circulation plane, and absence of significant non-Boussinesq effects, in turbulent convection near the ultimate-state transition. J. Fluid Mech. 791, R3.CrossRefGoogle Scholar
He, X., Bodenschatz, E. & Ahlers, G. 2021 A model for universal spatial variations of temperature fluctuations in turbulent Rayleigh–Bénard convection. Theor. Appl. Mech. 11 (2), 100237.CrossRefGoogle Scholar
He, X., Funfschilling, D., Bodenschatz, E. & Ahlers, G. 2012 a Heat transport by turbulent Rayleigh–Bénard convection for $Pr \simeq 0.8$ and $4\times 10^{11} \underset{\smash{\scriptscriptstyle\thicksim}} { < } Ra \underset{\smash{\scriptscriptstyle\thicksim}} { < } 2\times 10^{14}$: ultimate-state transition for aspect ratio $\varGamma = 1.00$. New J. Phys. 14, 063030.CrossRefGoogle Scholar
He, X., Funfschilling, D., Nobach, H., Bodenschatz, E. & Ahlers, G. 2012 b Transition to the ultimate state of turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 108, 024502.CrossRefGoogle ScholarPubMed
He, X., Funfschilling, D., Nobach, H., Bodenschatz, E. & Ahlers, G. 2013 Comment on “Effect of boundary layers asymmetry on heat transfer efficiency in turbulent Rayleigh–Bénard convection at very high Rayleigh numbers” by Urban. Phys. Rev. Lett. 110, 199401.CrossRefGoogle Scholar
He, X., van Gils, D.P.M., Bodenschatz, E. & Ahlers, G. 2015 Reynolds numbers and the elliptic approximation near the ultimate state of turbulent Rayleigh–Bénard convection. New J. Phys. 17, 063028.CrossRefGoogle Scholar
He, X., He, G. & Tong, P. 2010 Small-scale turbulent fluctuations beyond Taylor's frozen-flow hypothesis. Phys. Rev. E 81, 065303.CrossRefGoogle ScholarPubMed
He, X., van Gils, D., Bodenschatz, E. & Ahlers, G. 2014 Logarithmic spatial variations and universal $f^{-1}$ power spectra of temperature fluctuations in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 112, 174501.CrossRefGoogle ScholarPubMed
He, Y.-H. & Xia, K.-Q. 2019 Temperature fluctuation profiles in turbulent thermal convection: a logarithmic dependence versus a power-law dependence. Phys. Rev. Lett. 122, 014503.CrossRefGoogle ScholarPubMed
Kraichnan, R.H. 1962 Turbulent thermal convection at arbritrary Prandtl number. Phys. Fluids 5, 13741389.CrossRefGoogle Scholar
Lohse, D. & Xia, K.-Q. 2010 Small-scale properties of turbulent Rayleigh–Bénard convection. Annu. Rev. Fluid Mech. 42, 335364.CrossRefGoogle Scholar
Marshall, J. & Schott, F. 1999 Open-ocean convection: observations, theory, and models. Rev. Geophys. 37, 164.CrossRefGoogle Scholar
Maystrenko, A., Resagk, C. & Thess, A. 2007 Structure of the thermal boundary layer for turbulent Rayleigh–Bénard convection of air in a long rectangular enclosure. Phys. Rev. E 75, 066303.CrossRefGoogle Scholar
Müller, G., Neumann, G. & Weber, W. 1984 Natural convection in vertical bridgeman configurations. J. Cryst. Growth 70, 7893.CrossRefGoogle Scholar
Obukhov, A.M. 1949 Structure of the temperature field in turbulent flows. Izv. Akad. Nauk SSSR Geogr. Geofiz 13, 58.Google Scholar
van der Poel, E.P., Ostilla-Mónico, R., Verzicco, R., Grossmann, S. & Lohse, D. 2015 Logarithmic mean temperature profiles and their connection to plume emissions in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 115, 154501.CrossRefGoogle ScholarPubMed
Priestley, C.H.B. 1956 Free and forced convection in the atmosphere near the ground. Q. J. R. Meteorol. Soc. 81, 139143.CrossRefGoogle Scholar
du Puits, R., Resagk, C., Tilgner, A., Busse, F.H. & Thess, A. 2007 Structure of thermal boundary layers in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 572, 231254.CrossRefGoogle Scholar
Qiu, X.L. & Tong, P. 2001 Onset of coherent oscillations in turbulent Rayleigh–Bénard convection. Phys. Rev. Lett 87, 094501.CrossRefGoogle ScholarPubMed
Roche, P.-E. 2020 The ultimate state of convection: a unifying picture of very high Rayleigh numbers experiments. New J. Phys. 22, 073056.CrossRefGoogle Scholar
Roche, P.-E., Gauthier, F., Kaiser, R. & Salort, J. 2010 On the triggering of the ultimate regime of convection. New J. Phys. 12, 085014.CrossRefGoogle Scholar
Schmitz, S. & Tilgner, A. 2009 Heat transport in rotating convection without Ekman layers. Phys. Rev. E 80, 015305.CrossRefGoogle ScholarPubMed
Shishkina, O., Horn, S., Wagner, S. & Ching, E. 2015 Thermal boundary layer equation for turbulent Rayleigh–Bénard convection. Phys. Rev. Lett. 114, 114302.CrossRefGoogle ScholarPubMed
Sun, C., Cheung, Y.-H. & Xia, K.-Q. 2008 Experimental studies of the viscous boundary layer properties in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 605, 79113.CrossRefGoogle Scholar
Townsend, A.A. 1976 The Structure of Turbulent Shear Flow. Cambridge University Press.Google Scholar
Wan, Z.-H., Wei, P., Verzicco, R., Lohse, D., Ahlers, G. & Stevens, R. 2019 Effect of sidewall on heat transfer and flow structure in Rayleigh–Bénard convection. J. Fluid Mech. 881, 218243.CrossRefGoogle Scholar
Wang, Y., He, X. & Tong, P. 2016 Boundary layer fluctuations and their effects on mean and variance temperature profiles in turbulent Rayleigh–Bénard convection. Phys. Rev. Fluids 1, 082301.CrossRefGoogle Scholar
Wang, Y., Xu, W., He, X., Yik, H., Wang, X., Schumacher, J. & Tong, P. 2018 Boundary layer fluctuations in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 840, 408431.CrossRefGoogle Scholar
Wei, P. & Ahlers, G. 2016 On the nature of fluctuations in turbulent Rayleigh–Bénard convection at large Prandtl numbers. J. Fluid Mech. 802, 203244.CrossRefGoogle Scholar
Zhou, Q. & Xia, K.-Q. 2013 Thermal boundary layer structure in turbulent Rayleigh–Bénard convection in a rectangular cell. J. Fluid Mech. 721, 199224.CrossRefGoogle Scholar