Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T00:41:20.988Z Has data issue: false hasContentIssue false

Turbulent convection for different thermal boundary conditions at the plates

Published online by Cambridge University Press:  25 November 2020

Najmeh Foroozani*
Affiliation:
Institute of Thermodynamics and Fluid Mechanics, Technische Universität Ilmenau, P.O.Box 100565, D-98684Ilmenau, Germany
Dmitry Krasnov
Affiliation:
Institute of Thermodynamics and Fluid Mechanics, Technische Universität Ilmenau, P.O.Box 100565, D-98684Ilmenau, Germany
Jörg Schumacher
Affiliation:
Institute of Thermodynamics and Fluid Mechanics, Technische Universität Ilmenau, P.O.Box 100565, D-98684Ilmenau, Germany
*
Email address for correspondence: najmeh.foroozani@tu-ilmenau.de

Abstract

The influence of the different thermal boundary conditions at the bottom and top plates on the dynamics and statistics of a turbulent Rayleigh–Bénard convection flow is studied in three-dimensional direct numerical simulations. The flow evolves in a closed cylinder with an aspect ratio of $\varGamma =1/2$ in air for a Prandtl number $Pr=0.7$ and a Rayleigh number $Ra=10^7$ and in the liquid metal alloy GaInSn at $Pr=0.033$ and $Ra=10^7$, $10^8$. We apply for each case three different thermal boundary conditions at the top and bottom of the fluid volume while leaving the solid sidewall thermally insulated: (i) fixed temperature, (ii) fixed heat flux and (iii) conjugate heat transfer which couples the temperature and heat flux in the working fluid to that of the finitely thick, solid plates enclosing the turbulent flow. The global heat transfer is enhanced by up to 19 % for the conjugate heat transfer case in comparison to that of isothermal plates. The differences decrease for the lower of the two Prandtl numbers; they remain generally smaller for the global turbulent momentum transfer. Mean temperature profiles and root mean square velocity fluctuations are surprisingly weakly affected. The largest difference appears for the distribution of local thermal boundary scales when the cases of fixed temperature and of conjugate heat transfer are compared. We also discuss our results in view to experimental uncertainties in liquid metal experiments.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahlers, G., Grossmann, S. & Lohse, D. 2009 Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection. Rev. Mod. Phys. 81, 503537.CrossRefGoogle Scholar
Bailon-Cuba, J., Emran, M. S. & Schumacher, J. 2010 Aspect ratio dependence of heat transfer and large-scale flow in turbulent convection. J. Fluid Mech. 655, 152173.CrossRefGoogle Scholar
Brown, E., Nikolaenko, A., Funfschilling, D. & Ahlers, G. 2005 Heat transport in turbulent Rayleigh–Bénard convection: effect of finite top- and bottom-plate conductivities. Phys. Fluids 17, 075108.CrossRefGoogle Scholar
Chapman, C. J. & Proctor, M. R. E. 1980 Nonlinear Rayleigh–Bénard convection between poorly conducting boundaries. J. Fluid Mech. 101, 759782.CrossRefGoogle Scholar
Chillà, F., Rastello, M., Chaumat, S. & Castaing, B. 2004 Ultimate regime in Rayleigh–Bénard convection: the role of plates. Phys. Fluids 16, 2452.CrossRefGoogle Scholar
Chillà, F. & Schumacher, J. 2012 New perspectives in turbulent Rayleigh–Bénard convection. Eur. Phys. J. E 35, 58.CrossRefGoogle ScholarPubMed
Christensen, U. R. & Aubert, J. 2006 Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic field. Geophys. J. Intl 166, 97114.CrossRefGoogle Scholar
Cioni, S., Ciliberto, S. & Sommeria, J. 1997 Strongly turbulent Rayleigh–Bénard convection in mercury: comparison with results at moderate Prandtl number. J. Fluid Mech. 335, 111140.CrossRefGoogle Scholar
Deville, M. O., Fischer, P. F. & Mund, E. H. 2002 High-Order Methods for Incompressible Fluid Flow. Cambridge University Press.10.1017/CBO9780511546792CrossRefGoogle Scholar
Fischer, P. F. 1997 An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 133, 84101.CrossRefGoogle Scholar
Glazier, J. A., Segawa, T., Naert, A. & Sano, M. 1999 Evidence against “ultrahard” thermal turbulence at very high Rayleigh numbers. Nature 398, 307310.CrossRefGoogle Scholar
Horanyi, S., Krebs, L. & Müller, U. 1999 Turbulent Rayleigh–Bénard convection in low-Prandtl number fluid. Intl J. Heat Mass Transfer 42, 39834003.CrossRefGoogle Scholar
Huang, S. D., Wang, F., Xi, H. D. & Xia, K. Q. 2015 Comparative experimental study of fixed temperature and fixed heat flux boundary conditions in turbulent thermal convection. Phys. Rev. Lett. 115, 154502.CrossRefGoogle ScholarPubMed
Hurle, D. T. J., Jakeman, E. & Pike, E. R. 1967 On the solution of the Bénard problem with boundaries of finite conductivity. Proc. R. Soc. A 296, 469475.Google Scholar
Hust, J. G. & Lanford, A. B. 1984 Thermal conductivity of aluminium, copper, iron, and tungsten for temperatures from 1 K to the melting point. National Bureau of Standards. US Department of Commerce. Report NBSIR 84-3007, pp. 1–256.Google Scholar
Johnston, H. & Doering, C. R. 2009 Comparison of turbulent thermal convection between conditions of constant temperature and constant flux. Phys. Rev. Lett. 102, 064501.CrossRefGoogle ScholarPubMed
Marshall, J. & Schott, F. 1999 Open-ocean convection: observations, theory, and models. Rev. Geophys. 37, 164.CrossRefGoogle Scholar
Niemela, J. J., Skrbek, L., Sreenivasan, K. R. & Donnelly, R. J. 2000 Turbulent convection at very high Rayleigh numbers. Nature 404, 837840.CrossRefGoogle ScholarPubMed
Otero, J., Wittenberg, R. W., Worthing, R. A. & Doering, C. R. 2002 Bounds on Rayleigh–Bénard convection with an imposed heat flux. J. Fluid Mech. 473, 191199.CrossRefGoogle Scholar
Plevachuk, Y., Sklyarchuk, V., Eckert, S., Gerbeth, G. & Novakovic, R. 2014 Thermophysical properties of the liquid Ga–In–Sn eutectic alloy. J. Chem. Engng Data 59 (3), 757763.CrossRefGoogle Scholar
Salavy, J. F., Boccaccini, L. V., Lässer, R., Meyder, R., Neuberger, H., Poitevin, Y., Rampal, G., Rigal, E., Zmitko, M. & Aiello, A. 2007 Overview of the last progresses for the European Test Blanket Modules projects. Fusion Engng Des. 82 (15), 21052112.CrossRefGoogle Scholar
Scheel, J. D., Emran, M. S. & Schumacher, J. 2013 Resolving the fine-scale structure in turbulent Rayleigh–Bénard convection. New J. Phys. 15, 113063.CrossRefGoogle Scholar
Scheel, J. D. & Schumacher, J. 2014 Local boundary layer scales in turbulent Rayleigh–Bénard convection. J. Fluid Mech. 758, 344373.CrossRefGoogle Scholar
Scheel, J. D. & Schumacher, J. 2016 Global and local statistics in turbulent convection at low Prandtl numbers. J. Fluid Mech. 802, 147173.CrossRefGoogle Scholar
Schumacher, J., Bandaru, V., Pandey, A. & Scheel, J. D. 2016 Transitional boundary layers in low-Prandtl-number convection. Phys. Rev. Fluids 1, 084402.CrossRefGoogle Scholar
Schumacher, J., Götzfried, P. & Scheel, J. D. 2015 Enhanced enstrophy generation for turbulent convection in low-Prandtl-number fluids. Proc. Natl Acad. Sci. USA 112, 95309535.CrossRefGoogle ScholarPubMed
Shishkina, O. & Thess, A. 2009 Mean temperature profiles in turbulent Rayleigh–Bénard convection of water. J. Fluid Mech. 633, 449460.CrossRefGoogle Scholar
Smirnov, S. I., Smirnov, E. M. & Smirnovsky, A. A. 2017 Endwall heat transfer effects on the turbulent mercury convection in a rotating cylinder. St. Petersburg Polytech. Univ. J. 3, 8394.Google Scholar
Sparrow, E. M., Goldstein, R. J. & Jonsson, V. K. 1964 Thermal instability in a horizontal fluid layer: effect of boundary conditions and non-linear temperature profile. J. Fluid Mech. 18, 513528.CrossRefGoogle Scholar
Stevens, R. J. A. M., Lohse, D. & Verzicco, R. 2014 Sidewall effects in Rayleigh–Bénard convection. J. Fluid Mech. 741, 127.CrossRefGoogle Scholar
Takeshita, T., Segawa, T., Glazier, J. A. & Sano, M. 1996 Thermal turbulence in mercury. Phys. Rev. Lett. 76, 14651468.CrossRefGoogle ScholarPubMed
Teimurazov, A. & Frick, P. 2017 Thermal convection of liquid metal in a long inclined cylinder. Phys. Rev. Fluids 2, 113501.CrossRefGoogle Scholar
Vasil'ev, A. Y., Kolesnichenko, I. V., Mamykin, A. D., Frick, P. G., Khalilov, R. I., Rogozhkin, S. A. & Pakholkov, V. V. 2015 Turbulent convective heat transfer in an inclined tube filled with sodium. Tech. Phys. 60, 13051309.CrossRefGoogle Scholar
Verzicco, R. 2002 Sidewall finite-conductivity effects in confined turbulent thermal convection. J. Fluid Mech. 473, 201210.CrossRefGoogle Scholar
Verzicco, R. 2004 Effects of nonperfect thermal sources in turbulent thermal convection. Phys. Fluids 16, 19651979.CrossRefGoogle Scholar
Verzicco, R. & Camussi, R. 2003 Numerical experiments on strongly turbulent thermal convection in a slender cylindrical cell. J. Fluid Mech. 477, 1949.CrossRefGoogle Scholar
Verzicco, R. & Sreenivasan, K. R. 2008 A comparison of turbulent thermal convection between conditions of constant temperature and constant heat flux. J. Fluid Mech. 595, 2032019.CrossRefGoogle Scholar
Wan, Z. H., Wei, P., Verzicco, R., Lohse, D., Ahlers, G. & Stevens, R. J. A. M. 2019 Effect of sidewall on heat transfer and flow structure in Rayleigh–Bénard convection. J. Fluid Mech. 881, 218243.CrossRefGoogle Scholar
Wittenberg, R. W. 2010 Bounds on Rayleigh–Bénard convection with imperfectly conducting plate. J. Fluid Mech. 665, 158198.CrossRefGoogle Scholar
Zürner, T., Schindler, F., Vogt, T., Eckert, S. & Schumacher, J. 2019 Combined measurement of velocity and temperature in liquid metal convection. J. Fluid Mech 876, 11081128.CrossRefGoogle Scholar
Zwirner, L., Khalilov, R., Kolesnichenko, I., Mamykin, A., Mandrykin, S., Pavlinov, A., Shestakov, A., Teimurazov, A., Frick, P. & Shishkina, O. 2020 The influence of the cell inclination on the heat transport and large-scale circulation in liquid metal convection. J. Fluid Mech. 884, A18.CrossRefGoogle Scholar