Hostname: page-component-7dd5485656-wxk4p Total loading time: 0 Render date: 2025-10-29T18:10:28.423Z Has data issue: false hasContentIssue false

Transport of reactive solutes in a couple-stress fluid through a microchannel: a focus on longitudinal uniformity

Published online by Cambridge University Press:  29 October 2025

Debabrata Das
Affiliation:
Department of Mathematics, Cooch Behar Panchanan Barma University, Cooch Behar 736101, India
Subham Dhar
Affiliation:
School of Mechanical Engineering, Tel Aviv University, Tel Aviv Israel
Rishi Raj Kairi
Affiliation:
Department of Mathematics, Cooch Behar Panchanan Barma University, Cooch Behar 736101, India
Pranab Kumar Mondal*
Affiliation:
Microfluidics and Microscale Transport Processes Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India School of Agro and Rural Technology, Indian Institute of Technology Guwahati, Guwahati 781039, India
*
Corresponding author: Pranab Kumar Mondal, mail2pranab@gmail.com

Abstract

The integration of electro-osmotic effect to the underlying flow enhances solute dispersion precision in microfluidic systems, which is crucial for applications such as drug delivery and on-chip fluidic functionalities. We investigate, in this study, the solute dispersion characteristics of couple-stress fluids in a two-dimensional microchannel configuration under the combined effects of electro-osmotic actuation and applied pressure gradients. We consider both homogeneous and heterogeneous reactions in the present analysis. Couple-stress fluids, which account for additional stresses due to the presence of the microstructures in the fluids, offer a more accurate model to describe the rheological behaviour of biofluids. While previous studies have addressed longitudinal Gaussianity and transverse uniformity of solute distribution, we focus uniquely in this endeavour on longitudinal uniformity. Using Mei’s multiscale homogenisation technique, we solve a two-dimensional convection–diffusion model, extending it to third-order approximation to analyse the dispersion coefficient, concentration profiles, and variation rates of concentration within microchannel flow. Results show that forcing and couple-stress parameters enhance the gradients of the longitudinal variation rate, while boundary absorption reduces this variation rate near the walls. The couple-stress parameter exhibits dual behaviour: initially, it enhances solute dispersion, but beyond a certain value of couple-stress parameter $B_{cr}$ (which depends on forcing comparison and the Debye–Hückel parameter), it reduces dispersion. In the absence of pressure, solute distribution remains longitudinally uniform. However, as the pressure gradient increases, concentration levels drop sharply, and the distribution shifts to a parabolic profile, underscoring the significant influence of pressure on flow behaviour in electro-osmotic flow.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ahmed, S., Anwar Bég, O. & Ghosh, S. 2014 A couple stress fluid modeling on free convection oscillatory hydromagnetic flow in an inclined rotating channel. Ain Shams Engng J. 5 (4), 12491265.10.1016/j.asej.2014.04.006CrossRefGoogle Scholar
Alessio, B.M., Shim, S., Gupta, A. & Stone, H.A. 2022 Diffusioosmosis-driven dispersion of colloids: a Taylor dispersion analysis with experimental validation. J. Fluid Mech. 942, A23.10.1017/jfm.2022.321CrossRefGoogle Scholar
Alemayehu, H. & Radhakrishnamacharya, G. 2010 Dispersion of a solute in peristaltic motion of a couple stress fluid through a porous medium with slip condition. Intl J. Chem. Biol. Engng 3 (4), 205210.Google Scholar
Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 235 (1200), 6777.Google Scholar
Aruna, A. & Barik, S. 2023 Multi-scale analysis of solute dispersion in non-Newtonian flows in a tube with wall absorption. Phys. Fluids 35 (3), 033103.Google Scholar
Banerjee, D., Mehta, S.K., Pati, S. & Biswas, P. 2021 Analytical solution to heat transfer for mixed electroosmotic and pressure-driven flow through a microchannel with slip-dependent zeta potential. Intl J. Heat Mass Transfer 181, 121989.10.1016/j.ijheatmasstransfer.2021.121989CrossRefGoogle Scholar
Barik, S. & Dalal, D.C. 2018 Transverse concentration distribution in an open channel flow with bed absorption: a multi-scale approach. Commun. Nonlinear Sci. Numer. Simulation 65, 119.10.1016/j.cnsns.2018.04.024CrossRefGoogle Scholar
Bensoussan, A., Lions, J.L. & Papanicolaou, G. 2011 Asymptotic analysis for periodic structures, American Mathematical Soc., 374.Google Scholar
Chang, R. & Santiago, J.G. 2023 Taylor dispersion in arbitrarily shaped axisymmetric channels. J. Fluid Mech. 976, A30.10.1017/jfm.2023.504CrossRefGoogle Scholar
Chatwin, P.C. 1970 The approach to normality of the concentration distribution of a solute in a solvent flowing along a straight pipe. J. Fluid Mech. 43 (2), 321352.10.1017/S0022112070002409CrossRefGoogle Scholar
Chakraborty, S. & Paul, D. 2006 Microchannel flow control through a combined electromagnetohydrodynamic transport. J. Phys. D: Appl. Phys. 39 (24), 5364.10.1088/0022-3727/39/24/038CrossRefGoogle Scholar
Chakraborty, R., Dey, R. & Chakraborty, S. 2013 Thermal characteristics of electromagnetohydrodynamic flows in narrow channels with viscous dissipation and joule heating under constant wall heat flux. Intl J. Heat Mass Transfer 67, 11511162.10.1016/j.ijheatmasstransfer.2013.08.099CrossRefGoogle Scholar
Chaturani, P. & Upadhya, V.S. 1978 Pulsatile flow of a couple stress fluid through circular tubes with applications to blood flow. Biorheology 15 (3-4), 193201.Google ScholarPubMed
Chen, K.K., Lin, C.J. & Chu, W.F. 2022 Dispersion of heterogeneous medium in pulsatile blood flow and absolute pulsatile flow velocity quantification. IEEE Trans. Med. Imaging 42 (1), 170182.10.1109/TMI.2022.3206241CrossRefGoogle ScholarPubMed
Das, D., Poddar, N., Dhar, S., Kairi, R.R. & Mondal, K.K. 2021 Multi-scale approach to analyze the dispersion of solute under the influence of homogeneous and inhomogeneous reactions through a channel. Intl Commun. Heat Mass Transfer 129, 105709.10.1016/j.icheatmasstransfer.2021.105709CrossRefGoogle Scholar
Das, D., Poddar, N. & Kairi, R.R. 2024 Modulating solute transport in magnetohydrodynamic pulsatile electroosmotic micro-channel flow: role of symmetric and asymmetric wall zeta potentials. Phys. Fluids 36 (9), 092030.10.1063/5.0223624CrossRefGoogle Scholar
Dejam, M. 2019 Derivation of dispersion coefficient in an electroosmotic flow of a viscoelastic fluid through a porous-walled microchannel. Chem. Engng Sci. 204, 298309.10.1016/j.ces.2019.04.027CrossRefGoogle Scholar
Demello, A.J. 2006 Control and detection of chemical reactions in microfluidic systems. Nature 442 (7101), 394402.10.1038/nature05062CrossRefGoogle ScholarPubMed
Dentz, M. & de Barros, F.P. 2015 Mixing-scale dependent dispersion for transport in heterogeneous flows. J. Fluid Mech. 777, 178195.10.1017/jfm.2015.351CrossRefGoogle Scholar
Devakar, M. & Iyengar, T.K.V.K.V. 2010 Run up flow of a couple stress fluid between parallel plates. Nonlinear Anal.: Model. Control 15 (1), 2937.10.15388/NA.2010.15.1.14362CrossRefGoogle Scholar
Datta, S. & Ghosal, S. 2009 Characterizing dispersion in microfluidic channels. Lab Chip 9 (17), 25372550.10.1039/b822948cCrossRefGoogle ScholarPubMed
Dhar, S., Mondal, K.K. & Chadha, N.M. 2024 Numerical Exploration of Tracer Behavior in Porous Channels with Couple Stress and Magnetic Fields. vol. 315. Springer.10.1007/978-3-031-69134-8_25CrossRefGoogle Scholar
Decuzzi, P., Causa, F., Ferrari, M. & Netti, P.A. 2006 The effective dispersion of nanovectors within the tumor microvasculature. Annal. Biomed. Engng 34 (4), 633641.10.1007/s10439-005-9072-6CrossRefGoogle ScholarPubMed
Ding, Z., Jian, Y. & Tan, W. 2019 Electrokinetic energy conversion of two-layer fluids through nanofluidic channels. J. Fluid Mech. 863, 10621090.10.1017/jfm.2019.6CrossRefGoogle Scholar
Ding, Z. & Jian, Y. 2021 Electrokinetic oscillatory flow and energy conversion of viscoelastic fluids in microchannels: a linear analysis. J. Fluid Mech. 919, A20.10.1017/jfm.2021.380CrossRefGoogle Scholar
Ding, L. 2023 Shear dispersion of multispecies electrolyte solutions in the channel domain. J. Fluid Mech. 970, A27.10.1017/jfm.2023.626CrossRefGoogle Scholar
Fife, P.C. & Nicholes, K.R.K. 1975 Dispersion in flow through small tubes. Proc. R. Soc. Lond. A. Math. Phys. Sci. 344 (1636), 131145.Google Scholar
Funck, C., Laun, F.B. & Wetscherek, A. 2018 Characterization of the diffusion coefficient of blood. Magnet. Reson. Med. 79 (5), 27522758.10.1002/mrm.26919CrossRefGoogle ScholarPubMed
Gaikwad, H., Basu, D.N. & Mondal, P.K. 2016 Electroosmotic transport of immiscible binary system with a layer of non-conducting fluid under interfacial slip: the role of applied pressure gradient. Electrophoresis 37 (14), 19982009.10.1002/elps.201500457CrossRefGoogle ScholarPubMed
Gaikwad, H.S., Mondal, P.K. & Wongwises, S. 2018 Softness induced enhancement in net throughput of non-linear bio-fluids in nanofluidic channel under EDL phenomenon. Sci. Rep.-UK. 8 (1), 7893.10.1038/s41598-018-26056-6CrossRefGoogle ScholarPubMed
Garcia, A.L., Ista, L.K., Petsev, D.N., O’brien, M.J., Bisong, P., Mammoli, A.A., Brueck, S.R.J.López, G.P. 2005 Electrokinetic molecular separation in nanoscale fluidic channels. Lab Chip 5 (11), 12711276.10.1039/b503914bCrossRefGoogle ScholarPubMed
Gervais, T. & Jensen, K.F. 2006 Mass transport and surface reactions in microfluidic systems. Chem. Engng Sci. 61 (4), 11021121.10.1016/j.ces.2005.06.024CrossRefGoogle Scholar
Ghosal, S. 2002 a Band broadening in a microcapillary with a stepwise change in the $\zeta$ -potential. Anal. Chem. 74 (16), 41984203.10.1021/ac025630tCrossRefGoogle Scholar
Ghosal, S. 2002 b Effect of analyte adsorption on the electroosmotic flow in microfluidic channels. Anal. Chem. 74 (4), 771775.10.1021/ac010571pCrossRefGoogle ScholarPubMed
Ghosal, S. 2002 c Lubrication theory for electro-osmotic flow in a microfluidic channel of slowly varying cross-section and wall charge. J. Fluid Mech. 459, 103128.10.1017/S0022112002007899CrossRefGoogle Scholar
Gorthi, S.R., Mondal, P.K., Biswas, G. & Sahu, K.C. 2021 Electro-capillary filling in a microchannel under the influence of magnetic and electric fields. Canadian J. Chem. Engng 99 (3), 725741.10.1002/cjce.23876CrossRefGoogle Scholar
Hornung, U. 1997 Homogenization and Porous Media. Springer Science & Business Media.10.1007/978-1-4612-1920-0CrossRefGoogle Scholar
Huang, S., Debnath, S., Roy, A.K., Wang, J., Jiang, W., Bég, O.A. & Kuharat, S. 2024 Transient dispersion of reactive solute transport in electrokinetic microchannel flow. Phys. Fluids 36 (5), 052011.10.1063/5.0206129CrossRefGoogle Scholar
Ibrahim, A., Meyrueix, R., Pouliquen, G., Chan, Y.P. & Cottet, H. 2013 Size and charge characterization of polymeric drug delivery systems by Taylor dispersion analysis and capillary electrophoresis. Anal. Bioanal. Chem. 405 (16), 53695379.10.1007/s00216-013-6972-4CrossRefGoogle Scholar
Ishaq, M., Rehman, S.U., Riaz, M.B. & Zahid, M. 2024 Hydrodynamical study of couple stress fluid flow in a linearly permeable rectangular channel subject to Darcy porous medium and no-slip boundary conditions. Alexandria Engng J. 91, 5069.10.1016/j.aej.2024.01.066CrossRefGoogle Scholar
Jiang, W. & Chen, G. 2020 Dispersion of gyrotactic micro-organisms in pipe flows. J. Fluid Mech. 889, A18.10.1017/jfm.2020.91CrossRefGoogle Scholar
Jiang, W., Zeng, L., Fu, X. & Wu, Z. 2022 Analytical solutions for reactive shear dispersion with boundary adsorption and desorption. J. Fluid Mech. 947, A37.10.1017/jfm.2022.656CrossRefGoogle Scholar
Li, D. 2005 Microfluidics in lab-on-a-chip: models, simulations and experiments. In Microscale Heat Transfer- Fundamental and Applications, (eds. S. Kakac, L.L. Vasiliev, Y. Bayazitoglu & Y. Yener)), Kluwer Academic.Google Scholar
Ling, B., Rizzo, C.B., Battiato, I. & de Barros, F.P.J. 2021 Macroscale transport in channel-matrix systems via integral transforms. Phys. Rev. Fluids 6 (4), 044501.10.1103/PhysRevFluids.6.044501CrossRefGoogle Scholar
Masliyah, J.H. & Bhattacharjee, S. 2006 Electrokinetic and Colloid Transport Phenomena. Wiley-Interscience.10.1002/0471799742CrossRefGoogle Scholar
Mei, C.C., Auriault, J.L. & Ng, C.O. 1996 Some applications of the homogenization theory. Adv. Appl. Mech. 32, 277348.10.1016/S0065-2156(08)70078-4CrossRefGoogle Scholar
Mei, C.C. & Vernescu, B. 2009 Homogenization Methods for Multiscale Mechanics. World Scientific Publishing Company Pte Limited.Google Scholar
Pal, D., Rudraih, N. & Devanathan, R. 1988 A couple stress model of blood flow in the microcirculation. Bull. Math. Biol. 50 (4), 329344.10.1007/BF02459703CrossRefGoogle ScholarPubMed
Paul, S. & Ng, C.O. 2012 Dispersion in electroosmotic flow generated by oscillatory electric field interacting with oscillatory wall potentials. Microfluid. Nanofluid. 12, 237256.10.1007/s10404-011-0868-4CrossRefGoogle Scholar
Paul, S. & Ng, C.O. 2012 On the time development of dispersion in electroosmotic flow through a rectangular channel. Acta Mechanica Sinica 28 (3), 631643.10.1007/s10409-012-0113-8CrossRefGoogle Scholar
Ramanaiah, G. & Sarkar, P. 1978 Squeeze films and thrust bearings lubricated by fluids with couple stress. Wear 48 (2), 309316.10.1016/0043-1648(78)90229-6CrossRefGoogle Scholar
Ramon, G., Agnon, Y. & Dosoretz, C. 2011 Solute dispersion in oscillating electro-osmotic flow with boundary mass exchange. Microfuid. Nanofuid. 10, 97106.10.1007/s10404-010-0650-zCrossRefGoogle Scholar
Ren, Y. & Stein, D. 2008 Slip-enhanced electrokinetic energy conversion in nanofluidic channels. Nanotechnology 19 (19), 195707.10.1088/0957-4484/19/19/195707CrossRefGoogle ScholarPubMed
Reshadi, M. & Saidi, M.H. 2019 Tuning the dispersion of reactive solute by steady and oscillatory electroosmotic–Poiseuille flows in polyelectrolyte-grafted micro/nanotubes. J. Fluid Mech. 880, 73112.10.1017/jfm.2019.628CrossRefGoogle Scholar
Roy, A.K., Debnath, S. & Bég, O.A. 2023 Transient solute dispersion in electro-osmotic viscoplastic flow in a microchannel. Z Angew Math Mech. 103, e202200260.10.1002/zamm.202200260CrossRefGoogle Scholar
Rudraiah, N., Pal, D. & Siddheshwar, P.G. 1986 Effect of couple stresses on the unsteady convective diffusion in fluid flow through a channel. Biorheology 23 (4), 349358.Google ScholarPubMed
Sadeghi, M., Saidi, M.H., Moosavi, A. & Sadeghi, A. 2020 Unsteady solute dispersion by electrokinetic flow in a polyelectrolyte layer-grafted rectangular microchannel with wall absorption. J. Fluid Mech. 887, A13.10.1017/jfm.2019.1083CrossRefGoogle Scholar
Samuel, C.J., Chang, R., Ma, K. & Santiago, J.G. 2025 Taylor dispersion for coupled electroosmotic and pressure-driven flows in all time regimes. J. Fluid Mech. 1011, A36.10.1017/jfm.2025.335CrossRefGoogle Scholar
Schoch, R.B., Han, J. & Renaud, P. 2008 Transport phenomena in nanofluidics. Rev. Mod. Phys 80 (3), 839883.10.1103/RevModPhys.80.839CrossRefGoogle Scholar
Singh, S. & Murthy, P.V.S.N. 2023 Significance of skewness and kurtosis on the solute dispersion in pulsatile Carreau–Yasuda fluid flow in a tube with wall absorption. J. Fluid Mech. 962, A42.10.1017/jfm.2023.193CrossRefGoogle Scholar
Siva, T., Kumbhakar, B., Jangili, S. & Mondal, P.K. 2020 Unsteady electro-osmotic flow of couple stress fluid in a rotating microchannel: an analytical solution. Phys. Fluids 32 (10), 102013.10.1063/5.0023747CrossRefGoogle Scholar
Siva, T., Jangili, S., Kumbhakar, B. & Mondal, P.K. 2022 Unsteady electromagnetohydrodynamic flow of couple stress fluid through a microchannel: a theoretical analysis. Eur. J. Mech.-B/Fluids 95, 8393.10.1016/j.euromechflu.2022.04.007CrossRefGoogle Scholar
Soong, C.Y., Hwang, P.W. & Wang, J.C. 2010 Analysis of pressure-driven electrokinetic flows in hydrophobic microchannels with slip-dependent zeta potential. Microfluid. Nanofluid. 9, 32113223.10.1007/s10404-009-0536-0CrossRefGoogle Scholar
Song, J., Ng, C.O. & Law, W.K.A. 2014 Dispersion in oscillatory electro-osmotic flow through a parallel-plate channel with kinetic sorptive exchange at walls. J. Hydrodyn. 26 (3), 363373.10.1016/S1001-6058(14)60041-XCrossRefGoogle Scholar
Soundalgekar, V.M. 1971 Effects of couple stresses in fluids on dispersion of a solute in a channel flow. Phys. Fluids 14 (1), 1920.10.1063/1.1693276CrossRefGoogle Scholar
Stokes, V.K. 1984 Couple stresses in fluids. In Theories of Fluids with Microstructure. Springer.10.1007/978-3-642-82351-0CrossRefGoogle Scholar
Stone, H.A., Stroock, A.D. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36 (1), 381411.10.1146/annurev.fluid.36.050802.122124CrossRefGoogle Scholar
Talebi, R., Ashrafizadeh, S.N. & Sadeghi, A. 2021 Hydrodynamic dispersion by electroosmotic flow in soft microchannels: consideration of different properties for electrolyte and polyelectrolyte layer. Chem. Engng Sci. 229, 116058.10.1016/j.ces.2020.116058CrossRefGoogle Scholar
Taylor, G.I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. Ser. A. Math. Phys. Sci. 219 (1137), 186203.Google Scholar
Teng, J., Rallabandi, B. & Ault, J.T. 2023 Diffusioosmotic dispersion of solute in a long narrow channel. J. Fluid Mech. 977, A5.10.1017/jfm.2023.919CrossRefGoogle Scholar
Tripathi, A., Bozkurt, O. & Chauhan, A. 2005 Dispersion in microchannels with temporal temperature variations. Phys. Fluids 17 (10), 103607.10.1063/1.2115007CrossRefGoogle Scholar
Valanis, K.C. & Sun, C.T. 1969 Poiseuille flow of a fluid with couple stress with applications to blood flow. Biorheology 6 (2), 8597.Google ScholarPubMed
Wu, Z. & Chen, G.Q. 2014 Approach to transverse uniformity of concentration distribution of a solute in a solvent flowing along a straight pipe. J. Fluid Mech. 740, 196213.10.1017/jfm.2013.648CrossRefGoogle Scholar
Wu, Z., Li, Z. & Chen, G.Q. 2011 Multi-scale analysis for environmental dispersion in wetland flow. Commun. Nonlinear Sci. Numerical Simulation 16 (8), 31683178.10.1016/j.cnsns.2010.12.002CrossRefGoogle Scholar
Yan, X., Liu, M., Zhang, J., Zhu, H., Li, Y. & Liang, K. 2015 On-chip investigation of the hydrodynamic dispersion in rectangular microchannels. Microfluid. Nanofluid. 19, 435445.10.1007/s10404-015-1576-2CrossRefGoogle Scholar