Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T02:54:19.714Z Has data issue: false hasContentIssue false

Towards the distributed burning regime in turbulent premixed flames

Published online by Cambridge University Press:  17 May 2019

A. J. Aspden*
Affiliation:
School of Engineering, Newcastle University, Stephenson Building, Claremont Road, Newcastle upon Tyne NE1 7RU, UK Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, MS50A-3111, 1 Cyclotron Road, Berkeley, CA 94720, USA
M. S. Day
Affiliation:
Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, MS50A-3111, 1 Cyclotron Road, Berkeley, CA 94720, USA
J. B. Bell
Affiliation:
Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, MS50A-3111, 1 Cyclotron Road, Berkeley, CA 94720, USA
*
Email address for correspondence: andrew.aspden@ncl.ac.uk

Abstract

Three-dimensional numerical simulations of canonical statistically steady, statistically planar turbulent flames have been used in an attempt to produce distributed burning in lean methane and hydrogen flames. Dilatation across the flame means that extremely large Karlovitz numbers are required; even at the extreme levels of turbulence studied (up to a Karlovitz number of 8767) distributed burning was only achieved in the hydrogen case. In this case, turbulence was found to broaden the reaction zone visually by around an order of magnitude, and thermodiffusive effects (typically present for lean hydrogen flames) were not observed. In the preheat zone, the species compositions differ considerably from those of one-dimensional flames based a number of different transport models (mixture averaged, unity Lewis number and a turbulent eddy viscosity model). The behaviour is a characteristic of turbulence dominating non-unity Lewis number species transport, and the distinct limit is again attributed to dilatation and its effect on the turbulence. Peak local reaction rates are found to be lower in the distributed case than in the lower Karlovitz cases but higher than in the laminar flame, which is attributed to effects that arise from the modified fuel-temperature distribution that results from turbulent mixing dominating low Lewis number thermodiffusive effects. Finally, approaches to achieve distributed burning at realisable conditions are discussed; factors that increase the likelihood of realising distributed burning are higher pressure, lower equivalence ratio, higher Lewis number and lower reactant temperature.

Type
JFM Papers
Copyright
© Cambridge University Press 2019. This is a work of the U.S. Government and is not subject to copyright protection in the United States. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aspden, A. J. 2017 A numerical study of diffusive effects in turbulent lean premixed hydrogen flames. Proc. Combust. Inst. 36, 19972004.Google Scholar
Aspden, A. J., Bell, J. B., Day, M. S. & Egolfopoulos, F. N. 2017 Turbulence–flame interactions in lean premixed dodecane flames. Proc. Combust. Inst. 36, 20052016.Google Scholar
Aspden, A. J., Bell, J. B., Day, M. S., Woosley, S. E. & Zingale, M. 2008a Turbulence–flame interactions in type Ia supernovae. Astrophys. J. 689, 11731185.Google Scholar
Aspden, A. J., Bell, J. B. & Woosley, S. E. 2010 Distributed flames in type Ia supernovae. Astrophys. J. 710, 16541663.Google Scholar
Aspden, A. J., Day, M. S. & Bell, J. B. 2011a Lewis number effects in distributed flames. Proc. Combust. Inst. 33 (1), 14731480.Google Scholar
Aspden, A. J., Day, M. S. & Bell, J. B. 2011b Turbulence–flame interactions in lean premixed hydrogen: transition to the distributed burning regime. J. Fluid Mech. 680, 287320.Google Scholar
Aspden, A. J., Day, M. S. & Bell, J. B. 2015 Turbulence–chemistry interaction in lean premixed hydrogen combustion. Proc. Combust. Inst. 35 (2), 13211329.Google Scholar
Aspden, A. J., Day, M. S. & Bell, J. B. 2016 Three-dimensional direct numerical simulation of turbulent lean premixed methane combustion with detailed kinetics. Combust. Flame 166, 266283.Google Scholar
Aspden, A. J., Nikiforakis, N., Dalziel, S. B. & Bell, J. B. 2008 Analysis of implicit LES methods. Commun. Appl. Maths Comput. Sci. 3 (1), 101126.Google Scholar
Baum, M., Poinsot, T. J., Haworth, D. C. & Darabiha, N. 1994 Direct numerical simulation of H2/O2/N2 flames with complex chemistry in two-dimensional turbulent flows. J. Fluid Mech. 281, 132.Google Scholar
Chen, J. H. & Im, H. 2000 Stretch effects on the burning velocity of turbulent premixed hydrogen/air flames. Proc. Combust. Inst. 28 (1), 211218.Google Scholar
Damköhler, G. 1940 Der Einfluss der Turbulenz auf die Flammengeschwindigenkeit in Gasgemischen. Z. Elektrochem. 46, 601652.Google Scholar
Day, M. S. & Bell, J. B. 2000 Numerical simulation of laminar reacting flows with complex chemistry. Combust. Theor. Model. 4, 535556.Google Scholar
Dunn, M. J., Masri, A. R., Bilger, R. W. & Barlow, R. S. 2010 Finite rate chemistry effects in highly sheared turbulent premixed flames. Flow Turbul. Combust. 85 (3–4), 621648.Google Scholar
Echekki, T. & Chen, J. H. 1996 Unsteady strain rate and curvature effects in turbulent premixed methane-air flames. Combust. Flame 106 (1–2), 184202.Google Scholar
Ern, A. & Giovangigli, V. 1996 Optimized transport algorithms for flame codes. Combust. Sci. Technol. 118, 387396; see also http://www.cmap.polytechnique.fr/www.eglib/.Google Scholar
Frenklach, M., Wang, H., Goldenberg, M., Smith, G. P., Golden, D. M., Bowman, C. T., Hanson, R. K., Gardiner, W. C. & Lissianski, V.1995 GRI-Mech – an optimized detailed chemical reaction mechanism for methane combustion. Tech. Rep. GRI-95/0058. Gas Research Institute, http://www.me.berkeley.edu/gri_mech/.Google Scholar
Goodwin, D. G., Speth, R. L., Moffat, H. K. & Weber, B. W.2018 Cantera: An object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. Version 2.4.0. Available at: http://www.cantera.org.Google Scholar
Grinstein, F. F., Margolin, L. G. & Rider, W. J. 2007 Implicit Large Eddy Simulation. Cambridge University Press.Google Scholar
Lapointe, S., Savard, B. & Blanquart, G. 2015 Differential diffusion effects, distributed burning, and local extinctions in high Karlovitz premixed flames. Combust. Flame 162 (9), 33413355.Google Scholar
Li, J., Zhao, Z., Kazakov, A. & Dryer, F. L. 2004 An updated comprehensive kinetic model of hydrogen combustion. Intl J. Chem. Kinet. 36 (10), 566575.Google Scholar
Nilsson, T., Carlsson, H., Yu, R. & Bai, X.-S. 2018 Structures of turbulent premixed flames in the high Karlovitz number regime – DNS analysis. Fuel 216, 627638.Google Scholar
Nonaka, A., Bell, J. B., Day, M. S., Gilet, C., Almgren, A. S. & Minion, M. L. 2012 A deferred correction strategy for low mach number flow with complex chemistry. Combust. Theor. Model. 16 (6), 10531088.Google Scholar
Peters, N. 2000 Turbulent Combustion. Cambridge University Press.Google Scholar
Poinsot, T. & Veynante, D. 2005 Theoretical and Numerical Combustion, 2nd edn. Edwards.Google Scholar
Poludnenko, A. Y. & Oran, E. S. 2010 The interaction of high-speed turbulence with flames: global properties and internal flame structure. Combust. Flame 157 (5), 9951011.Google Scholar
Savard, B. & Blanquart, G. 2015 Broken reaction zone and differential diffusion effects in high Karlovitz n-C7H16 premixed turbulent flames. Combust. Flame 162 (5), 20202033.Google Scholar
Skiba, A. W., Wabel, T. M., Carter, C. D., Hammack, S. D., Temme, J. E. & Driscoll, J. F. 2018 Premixed flames subjected to extreme levels of turbulence part I: flame structure and a new measured regime diagram. Combust. Flame 189, 407432.Google Scholar
Towery, C. A. Z., Poludnenko, A. Y., Urzay, J., O’Brien, J., Ihme, M. & Hamlington, P. E. 2016 Spectral kinetic energy transfer in turbulent premixed reacting flows. Phys. Rev. E 93 (5), 053115.Google Scholar
Trouvé, A. & Poinsot, T. 1994 The evolution equation for the flame surface density in turbulent premixed combustion. J. Fluid Mech. 278, 131.Google Scholar
Wang, H., Hawkes, E. R., Savard, B. & Chen, J. H. 2018 Direct numerical simulation of a high Ka CH4 /air stratified premixed jet flame. Combust. Flame 193, 229245.Google Scholar
Yu, R. & Lipatnikov, A. N. 2017 Direct numerical simulation study of statistically stationary propagation of a reaction wave in homogeneous turbulence. Phys. Rev. E 95 (6), 063101.Google Scholar
Zhou, B., Brackmann, C., Wang, Z., Li, Z., Richter, M., Aldén, M. & Bai, X.-S. 2017 Thin reaction zone and distributed reaction zone regimes in turbulent premixed methane/air flames: scalar distributions and correlations. Combust. Flame 175, 220236.Google Scholar
Zimont, V. L. 1979 Theory of turbulent combustion of a homogeneous fuel mixture at high Reynolds numbers. Combust. Explos. Shock Waves 15 (3), 305311.Google Scholar
Supplementary material: File

Aspden et al. supplementary material

Aspden et al. supplementary material 1

Download Aspden et al. supplementary material(File)
File 4.6 MB