Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T15:20:27.717Z Has data issue: false hasContentIssue false

Time-domain analysis of contra-rotating propeller noise: wake interaction with a downstream propeller blade

Published online by Cambridge University Press:  28 August 2020

M. J. Kingan*
Affiliation:
Acoustics Research Centre, Department of Mechanical Engineering, University of Auckland, Auckland 1010, New Zealand
A. B. Parry
Affiliation:
30 Ypres Road, Allestree, DerbyDE22 2LZ, UK
*
Email address for correspondence: m.kingan@auckland.ac.nz

Abstract

This paper describes a theoretical study – in the time domain – of sound from the interaction of the steady component of the viscous wakes of an upstream propeller with a downstream contra-rotating propeller blade. The study incorporates a two-dimensional model of the upstream propeller wakes and a quasi-three-dimensional blade response function that accounts for downstream blade sweep. For a blade with a straight leading edge, the sound at the observer location, radiated from each blade radius, consists of a series of impulses whose peaks are shown to be influenced by micro Doppler effects and to correspond to the impingement of the propeller wake centrelines on the leading edge of the downstream blade. For radiation from the entire blade span, it is shown that constructive interference of the impulses from all radii can produce impulsive sound of very high amplitude, whereas dephasing of these impulses can reduce significantly the total acoustic signal. For a downstream propeller blade with a swept leading edge, it is shown how the sweep can be designed to ensure that these impulses are de-phased, resulting in significantly lower-amplitude sound at selected observer locations. Finally, to guarantee that the radiated sound is reduced at all possible observer locations, it is shown that the blade leading-edge sweep must be large enough that the trace velocity of the wake centreline, across the leading edge of the downstream propeller blade, is subsonic across the entire span. The benefits are demonstrated for representative blade designs.

JFM classification

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamczyk, J. J. 1974 a The passage of an infinite swept airfoil through an oblique gust. NASA Contractor Rep. 2395.CrossRefGoogle Scholar
Adamczyk, J. J. 1974 b Passage of a swept airfoil through an oblique gust. J. Aircraft 11, 281287.CrossRefGoogle Scholar
Amiet, R. K. 1975 Acoustic radiation from an airfoil in a turbulent stream. J. Sound Vib. 41, 407420.CrossRefGoogle Scholar
Amiet, R. K. 1976 High frequency thin-airfoil theory for subsonic flow. AIAA J. 14, 10761082.CrossRefGoogle Scholar
Amiet, R. K. 1988 Thickness noise of a propeller and its relation to blade sweep. J. Fluid Mech. 192, 535560.CrossRefGoogle Scholar
Bradley, A. J. 1986 A study of the rotor/rotor interaction tones from a contra-rotating propeller driven aircraft. AIAA Paper 86-1894.CrossRefGoogle Scholar
Brentner, K. S. & Farassat, F. 2003 Modelling aerodynamically generated sound of helicopter rotors. Prog. Aerosp. Sci. 39(2–3), 83120.CrossRefGoogle Scholar
Carazo, A., Roger, M. & Omais, M. 2011 Analytical prediction of wake-interaction noise in counterrotation open rotors. AIAA Paper 2011-2758.CrossRefGoogle Scholar
Chapman, C. J. 1988 a The ray theory of supersonic propeller acoustics. J. Sound Vib. 127(1), 145153.CrossRefGoogle Scholar
Chapman, C. J. 1988 b Shocks and singularities in the pressure field of a supersonically rotating propeller. J. Fluid Mech. 192, 116.CrossRefGoogle Scholar
Chen, V. C. 2019 The Micro-Doppler Effect in Radar, 2nd edn.Artech House.Google Scholar
Chen, V. C., Li, F., Ho, S.-S. & Wechsler, H. 2006 Micro-Doppler effect in radar: phenomenon, model, and simulation study. IEEE T. Aero. Elec. Syst. 42 (1), 221.CrossRefGoogle Scholar
Colin, Y., Blanc, F., Caruelle, B., Barrois, F. & Djordjevic, N. 2012 a Computational strategy for predicting CROR noise at low-speed. Part II. Investigation of the noise sources computation with the chorochronic method. AIAA Paper 2012-2222.CrossRefGoogle Scholar
Colin, Y., Caruelle, B., Node-Langlois, T., Omais, M. & Parry, A. B. 2012 b Computational strategy for predicting CROR noise at low-speed. Part I. Review of the numerical methods. AIAA Paper 2012-2221.CrossRefGoogle Scholar
Colin, Y., Caruelle, B. & Parry, A. B. 2012 Computational strategy for predicting CROR noise at low-speed. Part III. Investigation of noise radiation with the Ffowcs-Williams Hawkings analogy. AIAA Paper 2012-2223.CrossRefGoogle Scholar
Ekoule, C. M., McAlpine, A., Kingan, M. J., Sohoni, N. G. & Parry, A. B. 2015 Hybrid use of CFD and analytical methods for the prediction of advanced open rotor tone noise. AIAA Paper 2015-2357.CrossRefGoogle Scholar
Ekoule, C. M., McAlpine, A., Parry, A. B., Kingan, M. J. & Sohoni, N. G. 2017 Development of a hybrid method for the prediction of advanced open rotor tone noise. AIAA Paper 2017-3870.CrossRefGoogle Scholar
Envia, E. 2015 Aeroacoustic analysis of a high-speed open rotor. Intl J. Aeroacoust. 14 (3 & 4), 569606.CrossRefGoogle Scholar
Falissard, F. & Delattre, G. 2014 Investigation of counter rotating open rotor orthogonal blade/vortex interaction noise. AIAA Paper 2014-2748.CrossRefGoogle Scholar
Farassat, F. & Brown, T. J. 1977 A new capability for predicting helicopter rotor and propeller noise including the effect of forward motion. NASA TM X-74037.Google Scholar
Farassat, F. & Succi, G. P. 1983 The prediction of helicopter rotor discrete frequency noise. Vertica 7 (4), 309320.Google Scholar
Grasso, G., Christophe, J., Schram, C. F. & Verstraete, T. 2014 Influence of the noise prediction model on the aeroacoustic optimization of a contra-rotating fan. AIAA Paper 2014-2611.CrossRefGoogle Scholar
Hanson, D. B. 1976 Near field noise of high tip speed propellers in forward flight. AIAA Paper 1976-0565.Google Scholar
Hanson, D. B. 1980 Helicoidal surface theory for harmonic noise of propellers in the far field. AIAA J. 18(10), 12131220.CrossRefGoogle Scholar
Hanson, D. B. 1983 Compressible helicoidal surface theory for propeller aerodynamics and noise. AIAA J. 21(6), 881889.CrossRefGoogle Scholar
Hanson, D. B. 1985 Noise of counter-rotation propellers. J. Aircraft 22 (7), 609617.CrossRefGoogle Scholar
Hoff, G. E. 1990 Experimental performance and acoustic investigation of modern, counterrotating blade concepts. Final Rep. NASA CR 185158.Google Scholar
Kingan, M. J., Blandeau, V., Tester, B., Joseph, P. F. & Parry, A. B. 2011 Relative importance of open rotor tone and broadband noise sources. AIAA Paper 2011-2763.CrossRefGoogle Scholar
Kingan, M. J., Ekoule, C. E., Parry, A. B. & Britchford, K. 2014 Analysis of advanced open rotor noise measurements. AIAA Paper 2014-2745.CrossRefGoogle Scholar
Kingan, M. J. & Parry, A. B. 2019 a Acoustic theory of the many-bladed contra-rotating propeller: analysis of the effects of blade sweep on wake interaction noise. J. Fluid Mech. 868, 385427.CrossRefGoogle Scholar
Kingan, M. J. & Parry, A. B. 2019 b Acoustic theory of the many-bladed contra-rotating propeller: the effects of sweep on noise enhancement and reduction. J. Sound Vib. 468, 115089.CrossRefGoogle Scholar
Kingan, M. J. & Sureshkumar, P. 2014 Open rotor centrebody scattering. J. Sound Vib. 333 (2), 418433.CrossRefGoogle Scholar
Landahl, M. 1961 Unsteady Transonic Flow. Pergamon Press.Google Scholar
Moreau, S. & Roger, M. 2018 Advanced noise modeling for future propulsion systems. Intl J. Aeroacoust. 17 (6–8), 576599.CrossRefGoogle Scholar
Najafi-Yazdi, A., Brés, G. A. & Mongeau, L. 2011 An acoustic analogy formulation for moving sources in uniformly moving media. Proc. R. Soc. Lond. A 467, 144165.CrossRefGoogle Scholar
Parker, R. & Lathoud, M. 2010 Green aeroengines: technology to mitigate aviation impact on environment. Proc. Inst. Mech. Engrs 224 (3), 529538.R.Google Scholar
Parry, A. B. 1988 Theoretical prediction of counter-rotating propeller noise. PhD thesis, Department of Applied Mathematical Studies, University of Leeds.CrossRefGoogle Scholar
Parry, A. B. 1995 The effect of blade sweep on the reduction and enhancement of supersonic propeller noise. J. Fluid Mech. 293, 181206.CrossRefGoogle Scholar
Parry, A. B. 1997 Modular prediction scheme for blade row interaction noise. J. Propul. Power 13 (3), 334341.CrossRefGoogle Scholar
Parry, A. B., Crighton, D. G. 1989 Prediction of counter-rotation propeller noise. AIAA Paper 1989-1141.CrossRefGoogle Scholar
Parry, A. B. & Kingan, M. J. 2019 Acoustic theory of the many-bladed contra-rotating propeller: physics of the wake interaction noise critical sources. J. Fluid Mech. 880, R1.CrossRefGoogle Scholar
Peters, A. & Spakovszky, Z. S. 2010 Rotor interaction noise in counter-rotating propfan propulsion systems. ASME Paper GT2010-22554.CrossRefGoogle Scholar
Prentice, P. R. 1994 Time-domain asymptotics. II. Application to propeller acoustics. Proc. R. Soc. Lond. A 446, 361380.Google Scholar
Quaglia, M. E., Léonard, T., Moreau, S. & Roger, M. 2017 3D analytical model for orthogonal blade–vortex interaction noise. J. Sound Vib. 399, 104123.CrossRefGoogle Scholar
Quaglia, M. E., Moreau, S., Roger, M. & Fernando, R. 2016 A preliminary semi-empirical approach for CROR noise modelling. AIAA Paper 2016-2743.CrossRefGoogle Scholar
Ricouard, J., Julliard, E., Omais, M., Regnier, V., Parry, A. B. & Baralon, S. 2010 Installation effects on contra-rotating open rotor noise. AIAA Paper 2010-3795.CrossRefGoogle Scholar
Roger, M. & Carazo, A. 2010 Blade-geometry considerations in analytical gust-airfoil interaction noise models. AIAA Paper 2010-3799.CrossRefGoogle Scholar
Roger, M. & Moreau, S. 2010 Extensions and limitations of analytical airfoil broadband noise models. Intl J. Aeroacoust. 9, 273305.CrossRefGoogle Scholar
Roger, M. & Serafini, S. 2005 Interaction noise from a thin annulus in a circular jet. AIAA Paper 2005–2958.CrossRefGoogle Scholar
Sharma, A. & Chen, H. 2013 Prediction of aerodynamic tonal noise from open rotors. J. Sound Vib. 332, 38323845.CrossRefGoogle Scholar
Soulat, L., Kernemp, I., Sanjose, M., Moreau, S. & Fernando, R. 2013 Assessment and comparison of tonal noise models for counter-rotating open rotors. AIAA Paper 2013-2201.CrossRefGoogle Scholar
Soulat, L., Kernemp, I., Sanjose, M., Moreau, S. & Fernando, R. 2016 Numerical assessment of the tonal noise of counter-rotating open rotors at approach. Intl J. Aeroacoust. 15, 2340.CrossRefGoogle Scholar
Stürmer, A. & Yin, J. 2009 Low-speed aerodynamics and aeroacoustics of CROR propulsion systems. AIAA Paper 2009-3134.CrossRefGoogle Scholar
Tyler, J. M., Sofrin, T. G. 1962 Axial flow compressor noise studies. SAE Trans. 70, 309332.Google Scholar
Van Bladel, J. 1976 Electromagnetic fields in the presence of rotating bodies. Proc. IEEE 64 (3), 301318.CrossRefGoogle Scholar
Whitfield, C. E., Mani, R. & Gliebe, P. R. 1990 a High speed turboprop: aeroacoustic study (counterrotation). Volume I: model development. NASA CR185241.Google Scholar
Whitfield, C. E., Mani, R. & Gliebe, P. R. 1990 b High speed turboprop: aeroacoustic study (counterrotation). Volume II: computer programs. NASA CR185242.Google Scholar
Zachariadis, A., Hall, C. A. & Parry, A. B. 2011 Contra-rotating open rotor operation for improved aerodynamics and noise at takeoff. ASME Paper GT2011-45205.CrossRefGoogle Scholar