Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T02:54:44.270Z Has data issue: false hasContentIssue false

Tilted drifting jets over a zonally sloped topography: effects of vanishing eddy viscosity

Published online by Cambridge University Press:  09 August 2019

Hemant Khatri*
Affiliation:
Department of Mathematics, Imperial College London SW7 2AZ, London, UK
Pavel Berloff
Affiliation:
Department of Mathematics, Imperial College London SW7 2AZ, London, UK
*
Email address for correspondence: h.khatri16@imperial.ac.uk

Abstract

Oceanic multiple jets are seen to possess spatio-temporal variability imposed by varying bottom topography resulting in jets that can drift and merge. The dynamics of multiple jets over a topographic zonal slope is studied in a two-layer quasi-geostrophic model. The jets tilt from the zonal direction and drift meridionally. In addition to the tilted jets, other large-scale spatial patterns are observed, which are extracted using the principal component analysis. The variances of these patterns are strongly influenced by the values of eddy viscosity and bottom friction parameters. The contribution of the tilted jets to the full flow field decreases with decreasing friction and viscosity parameters, and purely zonal large-scale modes, propagating in the meridional direction, populate the flow field. Linear stability analysis and two-dimensional kinetic-energy spectrum analysis suggest that the zonal modes gain energy from ambient eddies as well as from the tilted jets through nonlinear interactions. However, viscous dissipation and bottom friction tend to suppress the nonlinear interactions, which results in the inhibition of the upscale energy transfer from eddies to the zonal modes. These simulations suggest that, in the presence of topography, alternating jet patterns may be sustained through interactions among various large-scale modes. This is different from the classical zonal jet formation arguments, in which direct eddy forcing maintains the jets.

Type
JFM Papers
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arbic, B. K. & Flierl, G. R. 2004 Baroclinically unstable geostrophic turbulence in the limits of strong and weak bottom Ekman friction: application to midocean eddies. J. Phys. Oceanogr. 34 (10), 22572273.Google Scholar
Arbic, B. K., Polzin, K. L., Scott, R. B., Richman, J. G. & Shriver, J. F. 2013 On eddy viscosity, energy cascades, and the horizontal resolution of gridded satellite altimeter products. J. Phys. Oceanogr. 43 (2), 283300.Google Scholar
Benilov, E. S. 2001 Baroclinic instability of two-layer flows over one-dimensional bottom topography. J. Phys. Oceanogr. 31 (8), 20192025.Google Scholar
Berloff, P. 2005 On rectification of randomly forced flows. J. Mar. Res. 63 (3), 497527.Google Scholar
Berloff, P. & Kamenkovich, I. 2013a On spectral analysis of mesoscale eddies. Part I. Linear analysis. J. Phys. Oceanogr. 43 (12), 25052527.Google Scholar
Berloff, P. & Kamenkovich, I. 2013b On spectral analysis of mesoscale eddies. Part II. Nonlinear analysis. J. Phys. Oceanogr. 43 (12), 25282544.Google Scholar
Berloff, P., Kamenkovich, I. & Pedlosky, J. 2009a A mechanism of formation of multiple zonal jets in the oceans. J. Fluid Mech. 628, 395425.Google Scholar
Berloff, P., Kamenkovich, I. & Pedlosky, J. 2009b A model of multiple zonal jets in the oceans: dynamical and kinematical analysis. J. Phys. Oceanogr. 39 (11), 27112734.Google Scholar
Berloff, P., Karabasov, S., Farrar, J. T. & Kamenkovich, I. 2011 On latency of multiple zonal jets in the oceans. J. Fluid Mech. 686, 534567.Google Scholar
Boland, E., Thompson, A. F., Shuckburgh, E. & Haynes, P. 2012 The formation of nonzonal jets over sloped topography. J. Phys. Oceanogr. 42 (10), 16351651.Google Scholar
Chen, C. & Kamenkovich, I. 2013 Effects of topography on baroclinic instability. J. Phys. Oceanogr. 43 (4), 790804.Google Scholar
Chen, C., Kamenkovich, I. & Berloff, P. 2015 On the dynamics of flows induced by topographic ridges. J. Phys. Oceanogr. 45 (3), 927940.Google Scholar
Dritschel, D. G. & McIntyre, M. E. 2008 Multiple jets as PV staircases: the Phillips effect and the resilience of eddy-transport barriers. J. Atmos. Sci. 65 (3), 855874.Google Scholar
Galperin, B., Nakano, H., Huang, H. P. & Sukoriansky, S. 2004 The ubiquitous zonal jets in the atmospheres of giant planets and Earth’s oceans. Geophys. Res. Lett. 31, L13303.Google Scholar
Galperin, B., Sukoriansky, S., Dikovskaya, N., Read, P. L., Yamazaki, Y. H. & Wordsworth, R. 2006 Anisotropic turbulence and zonal jets in rotating flows with a 𝛽-effect. Nonlinear Process. Geophys. 13 (1), 8398.Google Scholar
Hannachi, A., Jolliffe, I. T. & Stephenson, D. B. 2007 Empirical orthogonal functions and related techniques in atmospheric science: a review. Intl J. Climatol. 27 (9), 11191152.Google Scholar
Hart, J. E. 1975a Baroclinic instability over a slope. Part I. Linear theory. J. Phys. Oceanogr. 5 (4), 625633.Google Scholar
Hart, J. E. 1975b Baroclinic instability over a slope. Part II. Finite-amplitude theory. J. Phys. Oceanogr. 5 (4), 634641.Google Scholar
Jochum, M., Danabasoglu, G., Holland, M., Kwon, Y.-O. & Large, W. G. 2008 Ocean viscosity and climate. J. Geophys. Res. Oceans 113, C06017.Google Scholar
Kamenkovich, I., Berloff, P. & Pedlosky, J. 2009 Role of eddy forcing in the dynamics of multiple zonal jets in a model of the North Atlantic. J. Phys. Oceanogr. 39 (6), 13611379.Google Scholar
Karabasov, S. A., Berloff, P. & Goloviznin, V. M. 2009 Cabaret in the ocean gyres. Ocean Model. 30 (2), 155168.Google Scholar
Khatri, H. & Berloff, P. 2018a A mechanism for jet drift over topography. J. Fluid Mech. 845, 392416.Google Scholar
Khatri, H. & Berloff, P. 2018b Role of eddies in the maintenance of multiple jets embedded in eastward and westward baroclinic shears. Fluids 3 (4), 91.Google Scholar
Lee, S. 1997 Maintenance of multiple jets in a baroclinic flow. J. Atmos. Sci. 54 (13), 17261738.Google Scholar
Maximenko, N. A., Bang, B. & Sasaki, H. 2005 Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett. 32, L12607.Google Scholar
Nakano, H. & Hasumi, H. 2005 A series of zonal jets embedded in the broad zonal flows in the Pacific obtained in eddy-permitting ocean general circulation models. J. Phys. Oceanogr. 35 (4), 474488.Google Scholar
Panetta, R. L. 1993 Zonal jets in wide baroclinically unstable regions: persistence and scale selection. J. Atmos. Sci. 50 (14), 20732106.Google Scholar
Radko, T. & Kamenkovich, I. 2017 On the topographic modulation of large-scale eddying flows. J. Phys. Oceanogr. 47 (9), 21572172.Google Scholar
Rhines, P. B. 1975 Waves and turbulence on a beta-plane. J. Fluid Mech. 69 (03), 417443.Google Scholar
Rhines, P. B. 1979 Geostrophic turbulence. Annu. Rev. Fluid Mech. 11 (1), 401441.Google Scholar
Rhines, P. B. 1994 Jets. Chaos 4 (2), 313339.Google Scholar
Richards, K. J., Maximenko, N. A., Bryan, F. O. & Sasaki, H. 2006 Zonal jets in the pacific ocean. Geophys. Res. Lett. 33, L03605.Google Scholar
Rudko, M. V., Kamenkovich, I. V., Iskadarani, M. & Mariano, A. J. 2018 Zonally elongated transient flows: phenomenology and sensitivity analysis. J. Geophys. Res. Oceans 123 (6), 39824002.Google Scholar
Savill, A. M. 1987 Recent developments in rapid-distortion theory. Annu. Rev. Fluid Mech. 19 (1), 531573.Google Scholar
Sokolov, S. & Rintoul, S. R. 2007 Multiple jets of the Antarctic Circumpolar Current south of Australia. J. Phys. Oceanogr. 37 (5), 13941412.Google Scholar
Srinivasan, K. & Young, W. R. 2012 Zonostrophic instability. J. Atmos. Sci. 69 (5), 16331656.Google Scholar
Stern, A., Nadeau, L. P. & Holland, D. 2015 Instability and mixing of zonal jets along an idealized continental shelf break. J. Phys. Oceanogr. 45 (9), 23152338.Google Scholar
Sukoriansky, S., Dikovskaya, N. & Galperin, B. 2007 On the arrest of inverse energy cascade and the Rhines scale. J. Atmos. Sci. 64 (9), 33123327.Google Scholar
Thompson, A. F. 2010 Jet formation and evolution in baroclinic turbulence with simple topography. J. Phys. Oceanogr. 40 (2), 257278.Google Scholar
Thompson, A. F. & Richards, K. J. 2011 Low frequency variability of southern ocean jets. J. Geophys. Res. Oceans 116, C09022.Google Scholar
Thompson, A. F. & Sallée, J. 2012 Jets and topography: jet transitions and the impact on transport in the antarctic circumpolar current. J. Phys. Oceanogr. 42 (6), 956972.Google Scholar
Thompson, A. F. & Young, W. R. 2007 Two-layer baroclinic eddy heat fluxes: zonal flows and energy balance. J. Atmos. Sci. 64 (9), 32143231.Google Scholar
Vallis, G. K. 2017 Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press.Google Scholar
Vallis, G. K. & Maltrud, M. E. 1993 Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr. 23 (7), 13461362.Google Scholar
Van Sebille, E., Kamenkovich, I. & Willis, J. K. 2011 Quasi-zonal jets in 3-D Argo data of the northeast Atlantic. Geophys. Res. Lett. 38, L02606.Google Scholar