Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T06:09:38.122Z Has data issue: false hasContentIssue false

Three-dimensional direct numerical simulation of a turbulent lifted hydrogen jet flame in heated coflow: a chemical explosive mode analysis

Published online by Cambridge University Press:  19 May 2010

T. F. LU
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
C. S. YOO
Affiliation:
Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551, USA
J. H. CHEN
Affiliation:
Combustion Research Facility, Sandia National Laboratories, Livermore, CA 94551, USA
C. K. LAW*
Affiliation:
Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA
*
Email address for correspondence: cklaw@princeton.edu

Abstract

A chemical explosive mode analysis (CEMA) was developed as a new diagnostic to identify flame and ignition structure in complex flows. CEMA was then used to analyse the near-field structure of the stabilization region of a turbulent lifted hydrogen–air slot jet flame in a heated air coflow computed with three-dimensional direct numerical simulation. The simulation was performed with a detailed hydrogen–air mechanism and mixture-averaged transport properties at a jet Reynolds number of 11000 with over 900 million grid points. Explosive chemical modes and their characteristic time scales, as well as the species involved, were identified from the Jacobian matrix of the chemical source terms for species and temperature. An explosion index was defined for explosive modes, indicating the contribution of species and temperature in the explosion process. Radical and thermal runaway can consequently be distinguished. CEMA of the lifted flame shows the existence of two premixed flame fronts, which are difficult to detect with conventional methods. The upstream fork preceding the two flame fronts thereby identifies the stabilization point. A Damköhler number was defined based on the time scale of the chemical explosive mode and the local instantaneous scalar dissipation rate to highlight the role of auto-ignition in affecting the stabilization points in the lifted jet flame.

Type
Papers
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Current address: Department of Mechanical Engineering, University of Connecticut, CT 06269-3139, USA

Current address: School of Mechanical and Advanced Materials Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 689-798, Republic of Korea

References

REFERENCES

Bilger, R. W. 1988 The structure of turbulent nonpremixed flames. Proc. Combust. Inst. 22, 475488.CrossRefGoogle Scholar
Bongers, H., Van Oijen, J. A. & De Goey, L. P. H. 2002 Intrinsic low-dimensional manifold method extended with diffusion. Proc. Combust. Inst. 29, 13711378.CrossRefGoogle Scholar
Cabra, R., Myhrvold, T., Chen, J. Y., Dibble, R. W., Karpetis, A. N. & Barlow, R. S. 2002 Simultaneous laser Raman-Rayleigh-LIF measurements and numerical modelling results of a lifted turbulent H2/N2 jet flame in a vitiated coflow. Proc. Combust. Inst. 29, 18811888.CrossRefGoogle Scholar
Chen, J. H., Choudhary, A., de Supinski, B., DeVries, M., Hawkes, E. R., Lasky, S., Liao, W. K., Ma, K. L., Mellor-Crummey, J., Podhorszki, N., Sankaran, R., Shende, S. & Yoo, C. S. 2009 Terascale direct numerical simulations of turbulent combustion using S3D. Comput. Sci. Disc. 2, 015001.CrossRefGoogle Scholar
Chung, S. H. 2007 Stabilization, propagation and instability of tribrachial triple flames. Proc. Combust. Inst. 31, 877892.CrossRefGoogle Scholar
Davis, M. J. 2006 Low-dimensional manifolds in reaction–diffusion equations. Part I. Fundamental aspects. J. Phys. Chem. A 110, 52355256.Google Scholar
Davis, M. J. & Tomlin, A. S. 2008 Spatial dynamics of steady flames. Part I. Phase space structure and the dynamics of individual trajectories. J. Phys. Chem. A 112, 77687783.CrossRefGoogle Scholar
Fotache, C. G., Kreutz, T. G. & Law, C. K. 1997 Ignition of counterflowing methane versus heated air under reduced and elevated pressures. Combust. Flame 108, 442470.Google Scholar
Gordon, R. L., Masri, A. R., Pope, S. B. & Goldin, G. M. 2007 A numerical study of auto-ignition in turbulent lifted flames issuing into a vitiated co-flow. Combust. Theory Model. 11, 351376.CrossRefGoogle Scholar
Goussis, D. A. 1996 On the construction and use of reduced chemical kinetic mechanisms produced on the basis of given algebraic relations. J. Comput. Phys. 128, 261273.Google Scholar
Goussis, D. A. & Najm, H. N. 2006 Model reduction and physical understanding of slowly oscillating processes: the circadian cycle. Multiscale Model. Simul. 5, 12971332.Google Scholar
Goussis, D. A. & Valorani, M. 2006 An efficient iterative algorithm for the approximation of the fast and slow dynamics of stiff systems. J. Comput. Phys. 214, 316346.Google Scholar
Hadjinicolaou, M. & Goussis, D. A. 1998 Asymptotic solution of stiff PDEs with the CSP method: the reaction–diffusion equation. SIAM J. Sci. Comput. 20, 781810.Google Scholar
Jimenez, C. & Cuenot, B. 2007 DNS study of stabilization of turbulent triple flames by hot gases. Proc. Combust. Inst. 31, 16491656.Google Scholar
Joedicke, A., Peters, N. & Mansour, M. 2005 The stabilization mechanism and structure of turbulent hydrocarbon lifted flames. Proc. Combust. Inst. 30, 901909.CrossRefGoogle Scholar
Kalghatgi, G. T. 1984 Lift-off heights and visible lengths of vertical turbulent jet diffusion flames in still air. Combust. Sci. Technol. 41, 1719.Google Scholar
Kaper, H. G. & Kaper, T. J. 2002 Asymptotic analysis of two reduction methods for systems of chemical reactions. Physica D 165, 6693.CrossRefGoogle Scholar
Kazakov, A., Chaos, M., Zhao, Z. W. & Dryer, F. L. 2006 Computational singular perturbation analysis of two-stage ignition of large hydrocarbons. J. Phys. Chem. A 110, 70037009.CrossRefGoogle ScholarPubMed
Lam, S. H. 1985 Singular perturbation for stiff equations using numerical methods. In Recent Advances in the Aerospace Sciences (ed. Casci, Corrado, in honor of Luigi Crocco). Plenum.Google Scholar
Lam, S. H. 1992 The effects of fast chemical reactions on mass diffusion. MAE Rep. T1953, Princeton University, New Jersey.Google Scholar
Lam, S. H. 1993 Using CSP to understand complex chemical kinetics. Combust. Sci. Technol. 89, 375404.CrossRefGoogle Scholar
Lam, S. H. 2007 Reduced chemistry-diffusion coupling. Combust. Sci. Technol. 179, 767786.CrossRefGoogle Scholar
Lam, S. H. & Goussis, D. A. 1994 The CSP method for simplifying kinetics. Intl J. Chem. Kinet. 26, 461486.Google Scholar
Lee, J. C., Najm, H. N., Lefantzi, S., Ray, J., Frenklach, M., Valorani, M. & Goussis, D. A. 2007 A CSP and tabulation-based adaptive chemistry model. Combust. Theory Model. 11, 73102.CrossRefGoogle Scholar
Li, J., Zhao, Z. W., Kazakov, A. & Dryer, F. L. 2004 An updated comprehensive kinetic model of hydrogen combustion. Intl J. Chem. Kinet. 36, 566575.CrossRefGoogle Scholar
Lu, T. F., Ju, Y. G. & Law, C. K. 2001 Complex CSP for chemistry reduction and analysis. Combust. Flame 126, 14451455.CrossRefGoogle Scholar
Lu, T. F. & Law, C. K. 2008 A CSP-based criterion for the identification of QSS species: a reduced mechanism for methane oxidation with no chemistry. Combust. Flame 154, 761774.Google Scholar
Lu, T. F., Law, C. K. & Ju, Y. G. 2003 Some aspects of chemical kinetics in Chapman-Jouguet detonation: induction length analysis. J. Propul. Power 19, 901907.Google Scholar
Maas, U. & Pope, S. B. 1992 Simplifying chemical kinetics: intrinsic low-dimensional manifolds in composition space. Combust. Flame 88, 239264.CrossRefGoogle Scholar
Markides, C. N. & Mastorakos, E. 2005 An experimental study of hydrogen autoignition in a turbulent co-flow of heated air. Proc. Combust. Inst. 30, 883891.CrossRefGoogle Scholar
Massias, A., Diamantis, D., Mastorakos, E. & Goussis, D. A. 1999 a Global reduced mechanisms for methane and hydrogen combustion with nitric oxide formation constructed with CSP data. Combust. Theory Model. 3, 233257.CrossRefGoogle Scholar
Massias, A., Diamantis, D., Mastorakos, E. & Goussis, D. A. 1999 b An algorithm for the construction of global reduced mechanisms with CSP data. Combust. Flame 117, 685708.CrossRefGoogle Scholar
Mizobuchi, Y., Shinjo, J., Ogawa, S. & Takeno, T. 2005 A numerical study on the formation of diffusion flame islands in a turbulent hydrogen jet lifted flame. Proc. Combust. Inst. 30, 611619.CrossRefGoogle Scholar
Peters, N. & Williams, F. A. 1983 Liftoff characteristics of turbulent jet diffusion flames. AIAA J. 21, 423429.CrossRefGoogle Scholar
Pitts, W. M. 1988 Assessment of theories for the behaviour and blowout of lifted turbulent jet diffusion flames. Proc. Combust. Inst. 22, 809816.Google Scholar
Ren, Z. & Pope, S. B. 2006 The use of slow manifolds in reactive flows. Combust. Flame 147, 243261.CrossRefGoogle Scholar
Ren, Z. & Pope, S. B. 2007 a Transport-chemistry coupling in the reduced description of reactive flows. Combust. Theory Model. 11, 715739.Google Scholar
Ren, Z. & Pope, S. B. 2007 b Reduced description of complex dynamics in reactive systems. J. Phys. Chem. A 111, 84648474.CrossRefGoogle ScholarPubMed
Singh, S., Powers, J. M. & Paolucci, S. 2002 On slow manifolds of chemically reactive systems. J. Chem. Phys. 117, 14821496.CrossRefGoogle Scholar
Su, L. K., Sun, O. S. & Mungal, M. G. 2006 Experimental investigation of stabilization mechanisms in turbulent, lifted jet diffusion flames. Combust. Flame 144, 494512.CrossRefGoogle Scholar
Tacke, M. M., Geyer, D., Hassel, E. P. & Janicka, J. 1998 A detailed investigation of the stabilization point of lifted turbulent diffusion flames. Proc. Combust. Inst. 27, 11571165.CrossRefGoogle Scholar
Upatnieks, A., Driscoll, J. F., Rasmussen, C. C. & Ceccio, S. L. 2004 Liftoff of turbulent jet flames: assessment of edge flame and other concepts using cinema-PIV. Combust. Flame 138, 259272.Google Scholar
Valorani, M., Creta, F., Goussis, D. A., Lee, J. C. & Najm, H. N. 2006 An automatic procedure for the simplification of chemical kinetic mechanisms based on CSP. Combust. Flame 146, 2951.CrossRefGoogle Scholar
Valorani, M., Goussis, D. A., Creta, F. & Najm, H. N. 2005 Higher order corrections in the approximation of low-dimensional manifolds and the construction of simplified problems with the CSP method. J. Comput. Phys. 209, 754786.CrossRefGoogle Scholar
Valorani, M., Najm, H. N. & Goussis, D. A. 2003 CSP analysis of a transient flame-vortex interaction: time scales and manifolds. Combust. Flame 134, 3553.CrossRefGoogle Scholar
Vanquickenborne, L. & van Tiggelen, A. 1966 Stabilization mechanism of lifted diffusion flames. Combust. Flame 10, 5969.Google Scholar
Yamashita, H., Shimada, M. & Takeno, T. 1996 A numerical study on flame stability at the transition point of jet diffusion flames. Proc. Combust. Inst. 26, 2734.CrossRefGoogle Scholar
Yoo, C. S., Sankaran, R. & Chen, J. H. 2009 Three-dimensional direct numerical simulation of a turbulent lifted hydrogen/air jet flame in heated coflow: flame stabilization and structure. J. Fluid Mech. 460, 453481.CrossRefGoogle Scholar
Zagaris, A., Kaper, H. G. & Kaper, T. J. 2004 a Analysis of the computational singular perturbation reduction method for chemical kinetics. J. Nonlinear Sci. 14, 5991.Google Scholar
Zagaris, A., Kaper, H. G. & Kaper, T. J. 2004 b Fast and slow dynamics for the computational singular perturbation method. Multiscale Model. Simul. 2, 613638.CrossRefGoogle Scholar
Zagaris, A., Kaper, H. G. & Kaper, T. J. 2005 Two perspectives on reduction of ordinary differential equations. Math. Nachr. 278, 16291642.CrossRefGoogle Scholar