Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-25T19:37:28.791Z Has data issue: false hasContentIssue false

A theory for the emergence of coherent structures in beta-plane turbulence

Published online by Cambridge University Press:  06 January 2014

Nikolaos A. Bakas*
Affiliation:
National and Kapodistrian University of Athens, Building IV, Office 34, Panepistimiopolis, Zografos, Athens, Greece
Petros J. Ioannou
Affiliation:
National and Kapodistrian University of Athens, Building IV, Office 34, Panepistimiopolis, Zografos, Athens, Greece
*
Email address for correspondence: nikos.bakas@gmail.com

Abstract

Planetary turbulent flows are observed to self-organize into large-scale structures such as zonal jets and coherent vortices. One of the simplest models of planetary turbulence is obtained by considering a barotropic flow on a beta-plane channel with turbulence sustained by random stirring. Nonlinear integrations of this model show that as the energy input rate of the forcing is increased, the homogeneity of the flow is broken with the emergence of non-zonal, coherent, westward propagating structures and at larger energy input rates by the emergence of zonal jets. We study the emergence of non-zonal coherent structures using a non-equilibrium statistical theory, stochastic structural stability theory (S3T, previously referred to as SSST). S3T directly models a second-order approximation to the statistical mean turbulent state and allows the identification of statistical turbulent equilibria and study of their stability. Using S3T, the bifurcation properties of the homogeneous state in barotropic beta-plane turbulence are determined. Analytic expressions for the zonal and non-zonal large-scale coherent flows that emerge as a result of structural instability are obtained. Through numerical integrations of the S3T dynamical system, it is found that the unstable structures equilibrate at finite amplitude. Numerical simulations of the nonlinear equations confirm the characteristics (scale, amplitude and phase speed) of the structures predicted by S3T.

Type
Papers
Copyright
© 2014 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ŝeferences

Bakas, N. A. & Ioannou, P. J. 2011 Structural stability theory of two-dimensional fluid flow under stochastic forcing. J. Fluid Mech. 682, 332361.Google Scholar
Bakas, N. A. & Ioannou, P. J. 2013a Emergence of large-scale structure in barotropic beta-plane turbulence. Phys. Rev. Lett. 110, 224501.Google Scholar
Bakas, N. A. & Ioannou, P. J. 2013b On the mechanism underlying the spontaneous emergence of barotropic zonal jets. J. Atmos. Sci. 70, 22512271.Google Scholar
Berloff, P., Kamenkovich, I. & Pedlosky, J. 2009 A mechanism of formation of multiple zonal jets in the oceans. J. Fluid Mech. 628, 395425.Google Scholar
Bernstein, J. 2009 Dynamics of turbulent jets in the atmosphere and ocean. PhD thesis, Harvard University.Google Scholar
Bernstein, J. & Farrell, B. F. 2010 Low-frequency variability in a turbulent baroclinic jet: eddy-mean flow interactions in a two-level model. J. Atmos. Sci. 67, 452467.Google Scholar
Bouchet, F., Nardini, C. & Tangarife, T. 2013 Kinetic theory of jet dynamics in the stochastic barotropic and 2D Navier–Stokes equations. J. Stat. Phys. 153, 572625.Google Scholar
Bouchet, F. & Sommeria, J. 2002 Emergence of intense jets and Jupiter’s Great Red Spot as maximum-entropy structures. J. Fluid Mech. 464, 165207.Google Scholar
Bouchet, F. & Venaille, A. 2012 Statistical mechanics of two-dimensional and geophysical flows. Phys. Rep. 515 (5), 227295.Google Scholar
Busse, F. H. 1978 Nonlinear properties of convection. Rep. Prog. Phys. 41, 19291967.Google Scholar
Chavanis, P. H. & Sommeria, J. 1998 Classification of robust isolated vortices in two-dimensional hydrodynamics. J. Fluid Mech. 356, 259296.Google Scholar
Chelton, D. B., Schlax, M. G., Samelson, R. M. & de Szoeke, R. A. 2007 Global observations of large oceanic eddies. Geophys. Res. Lett. 34, L12607.CrossRefGoogle Scholar
Cho, J. Y. K & Polvani, L. M. 1996 The morphogenesis of bands and zonal winds in the atmospheres on the giant outer planets. Science 273, 335337.Google Scholar
Constantinou, N. C., Farrell, B. F. & Ioannou, P. J. Emergence and equilibration of jets in beta-plane turbulence: applications of stochastic structural stability theory. J. Atmos. Sci. doi:10.1175/JAS-D-13-076.1, (in press).CrossRefGoogle Scholar
Cross, M. & Greenside, H. 2009 Pattern Formation and Dynamics in Nonequilibrium Systems. Cambridge University Press.Google Scholar
Danilov, S. & Gurarie, D. 2004 Scaling, spectra and zonal jets in beta plane turbulence. Phys. Fluids 16, 25922603.Google Scholar
DelSole, T. 2004 Stochastic models of quasigeostrophic turbulence. Surv. Geophys. 25, 107194.Google Scholar
DelSole, T. & Farrell, B. F. 1996 The quasi-linear equilibration of a thermally maintained, stochastically excited jet in a quasigeostrophic model. J. Atmos. Sci. 53, 17811797.Google Scholar
Di Nitto, G, Espa, S & Cenedese, A 2013 Simulating zonation in geophysical flows by laboratory experiments. Phys. Fluids 25, 086602.Google Scholar
Dubrulle, B. & Nazarenko, S. 1997 Interaction of turbulence and large-scale vortices in incompressible 2D fluids. Physica D 110, 123138.Google Scholar
Espa, S., Di Nitto, G. & Cenedese, A. 2010 The emergence of zonal jets in forced rotating shallow water turbulence: A laboratory study. Eur. Phys. Lett. 92, 34006.Google Scholar
Farrell, B. F. & Ioannou, P. J. 1993a Stochastic dynamics of baroclinic waves. J. Atmos. Sci. 50, 40444057.Google Scholar
Farrell, B. F. & Ioannou, P. J. 1993b Stochastic forcing of perturbation variance in unbounded shear and deformation flows. J. Atmos. Sci. 50, 200211.Google Scholar
Farrell, B. F. & Ioannou, P. J. 1993c Stochastic forcing of the linearized Navier–Stokes equations. Phys. Fluids 5, 26002609.Google Scholar
Farrell, B. F. & Ioannou, P. J. 2003 Structural stability of turbulent jets. J. Atmos. Sci. 60, 21012118.Google Scholar
Farrell, B. F. & Ioannou, P. J. 2007 Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci. 64, 36523655.CrossRefGoogle Scholar
Farrell, B. F. & Ioannou, P. J. 2008 Formation of jets in baroclinic turbulence. J. Atmos. Sci. 65, 33523355.Google Scholar
Farrell, B. F. & Ioannou, P. J. 2009a Emergence of jets from turbulence in the shallow-water equations on an equatorial beta-plane. J. Atmos. Sci. 66, 31973207.CrossRefGoogle Scholar
Farrell, B. F. & Ioannou, P. J. 2009b A stochastic structural stability theory model of the drift wave-zonal flow system. Phys. Plasmas 16, 112903.Google Scholar
Farrell, B. F. & Ioannou, P. J. 2009c A theory of baroclinic turbulence. J. Atmos. Sci. 66, 24442454.Google Scholar
Farrell, B. F. & Ioannou, P. J. 2012 Dynamics of streamwise rolls and streaks in turbulent wall–bounded shear flow. J. Fluid Mech. 708, 149196.Google Scholar
Fjörtöft, R. 1953 On the changes in the spectral distribution of kinetic evergy for two-dimensional, non-divergent flow. Tellus 5, 120140.Google Scholar
Galperin, B. H., Sukoriansky, S. & Dikovskaya, N. 2010 Geophysical flows with anisotropic turbulence and dispersive waves: flows with a $\beta $-effect. Ocean Dyn. 60, 427441.CrossRefGoogle Scholar
Galperin, B. H., Sukoriansky, S., Dikovskaya, N., Read, P., Yamazaki, Y. & Wordsworth, R. 2006 Anisotropic turbulence and zonal jets in rotating flows with a $\beta $-effect. Nonlinear Process. Geophys. 13, 8398.Google Scholar
Galperin, B. H., Young, R. M., Sukoriansky, S., Dikovskaya, N. L., Read, P. J., Lancaster, A. & Armstrong, D. 2014 Cassini observations reveal a regime of zonostrophic macroturbulence on Jupiter. Icarus 29, 295320.CrossRefGoogle Scholar
Huang, H. P., Galperin, B. H. & Sukoriansky, S. 2001 Anisotropic spectra in two-dimensional turbulence on the surface of a rotating sphere. Phys. Fluids 13, 225240.CrossRefGoogle Scholar
Huang, H. P. & Robinson, W. A. 1998 Two-dimensional turbulence and persistent zonal jets in a global barotropic model. J. Atmos. Sci. 55, 611632.2.0.CO;2>CrossRefGoogle Scholar
Ingersoll, A. P. 1990 Atmospheric dynamics of the outer planets. Science 248, 308315.Google Scholar
Laval, J.-P., Dubrulle, B. & McWilliams, J. C. 2003 Langevin models of turbulence: Renormalization group, distant interaction algorithms or rapid distortion theory?. Phys. Fluids 15, 13271339.Google Scholar
Laval, J. P., Dubrulle, B. & Nazarenko, S. 2000 Dynamical modelling of sub-grid scales in 2D turbulence. Physica D 142, 231235.CrossRefGoogle Scholar
Marston, J. B. 2010 Statistics of the general circulation from cumulant expansions. Chaos 20, 041107.Google Scholar
Marston, J. B. 2012 Planetary atmospheres as nonequilibrium condensed matter. Annu. Rev. Condens. Matter Phys. 3, 285310.Google Scholar
Marston, J. B., Conover, E. & Schneider, T. 2008 Statistics of an unstable barotropic jet from a cumulant expansion. J. Atmos. Sci. 65, 19551966.CrossRefGoogle Scholar
Maximenko, N., Bang, B. & Sasaki, H. 2005 Observational evidence of alternating zonal jets in the world ocean. Geophys. Res. Lett. 32, L12607.Google Scholar
Miller, J. 1990 Statistical mechanics of Euler equation in two-dimensions. Phys. Rev. Lett. 65, 21372140.Google Scholar
Nadiga, B. 2006 On zonal jets in oceans. Geophys. Res. Lett. 33, L10601.Google Scholar
Nazarenko, S. & Quinn, B. 2009 Triple cascade behaviour in quasigeostrophic and drift turbulence and generation of zonal jets. Phys. Rev. Lett. 103, 118501.Google Scholar
Nozawa, T. & Yoden, Y. 1997 Formation of zonal band structure in forced two-dimensional turbulence on a rotating sphere. Phys. Fluids 9, 20812093.Google Scholar
O’Gorman, P. A. & Schneider, T. 2007 Recovery of atmospheric flow statistics in a general circulation model without nonlinear eddy–eddy interactions. Geophys. Res. Lett. 34, L22801.Google Scholar
Onsager, L. 1949 Statistical hydrodynamics. Nuovo Cimento 6, 249286.Google Scholar
Parker, J. B. & Krommes, J. A. 2013 Zonal flow as pattern formation. Phys. Plasmas 20, 100703.Google Scholar
Peixoto, J. P. & Oort, A. H. 1992 Physics of Climate. American Institute of Physics.Google Scholar
Rayleigh, Lord 1916 On the convective currents in a horizontal layer of fluid when the higher temperature is on the under side. Phil. Mag. 32, 529546.Google Scholar
Read, P. L., Yamazaki, Y. H., Lewis, S. R., Williams, P. D., Miki-Yamazaki, K., Sommeria, J., Didelle, H. & Fincham, A. 2004 Jupiter’s and Saturn’s convectively driven banded jets in the laboratory. Geophys. Res. Lett. 87, 19611967.Google Scholar
Rhines, P. B. 1975 Waves and turbulence on a beta plane. J. Fluid Mech. 69, 417433.Google Scholar
Robert, R. & Sommeria, J. 1991 Statistical equilibrium states for two-dimensional flows. J. Fluid Mech. 229, 291310.Google Scholar
Shepherd, T. G. 1987 A spectral view of nonlinear fluxes and stationary-transient interaction in the atmosphere. J. Atmos. Sci. 44, 11661178.Google Scholar
Smith, K. S., Boccaletti, G., Henning, C. C., Marinov, L., Tam, C. Y., Held, I. M. & Vallis, G. K. 2002 Turbulent diffusion in the geostrophic inverse cascade. J. Fluid Mech. 469, 1348.CrossRefGoogle Scholar
Srinivasan, K. & Young, W. R. 2012 Zonostrophic instability. J. Atmos. Sci. 69, 16331656.Google Scholar
Sukariansky, S., Dikovskaya, N. & Galperin, B. 2007 On the arrest of inverse energy cascade and the Rhines scale. J. Atmos. Sci. 64, 33123327.Google Scholar
Sukariansky, S., Dikovskaya, N. & Galperin, B. 2008 Nonlinear waves in zonostrophic turbulence. Phys. Rev. Lett. 101, 178501.Google Scholar
Tobias, S. M., Dagon, K. & Marston, J. B. 2011 Astrophysical fluid dynamics via direct numerical simulation. Astrophys. J. 727, 127.Google Scholar
Vallis, G. K. & Maltrud, M. E. 1993 Generation of mean flows and jets on a beta plane and over topography. J. Phys. Oceanogr. 23, 13461362.Google Scholar
Vasavada, A. R. & Showman, A. P. 2005 Jovian atmospheric dynamics. An update after Galileo and Cassini. Rep. Prog. Phys. 68, 19351996.Google Scholar
Venaille, A. & Bouchet, F. 2011 Oceanic rings and jets as statistical equilibrium states. J. Phys. Oceanogr. 41, 18601873.Google Scholar
Weeks, W. R., Trian, Y., Urbach, J. S., Ide, K., Swinney, H. L. & Ghil, M. 1997 Transitions between blocked and zonal flows in a rotating annulus. Science 278, 15981601.Google Scholar
Williams, G. P. 1978 Planetary circulations: 1. Barotropic representation of Jovian and terrestrial turbulence. J. Atmos. Sci. 35, 13991426.Google Scholar