Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T05:27:12.684Z Has data issue: false hasContentIssue false

Test section streaks originating from imperfections in a zither located upstream of a contraction

Published online by Cambridge University Press:  15 December 2015

David A. Pook*
Affiliation:
School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Bundoora, VIC 3083, Australia
Jonathan H. Watmuff
Affiliation:
School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Bundoora, VIC 3083, Australia
Adrian C. Orifici
Affiliation:
School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Bundoora, VIC 3083, Australia
*
Email address for correspondence: d.pook.engineer@gmail.com

Abstract

Defining a link between wind-tunnel settling chamber screens, flow quality and test section boundary-layer spanwise variation is necessary for accurate transition prediction. The aim of this work is to begin establishing this link. The computed, steady, laminar wake of a zither (screen model) with imperfect wire spacing is tracked through a contraction and into a model test section. The contraction converts the zither wake into streamwise vorticity which then creates spanwise variation (streaks) in the test-section boundary layer. The magnitude of the spanwise variation is sensitive to the zither open-area ratio and imperfections, but the observed wavelength is relatively insensitive to the zither wire spacing. Increased spanwise variation is attributed to large wavelength variation of drag across the zither, and not the coalescence of jets phenomena. The linear stability of the streaks is predicted using the parabolized stability equations with the $\text{e}^{N}$ method. A standard deviation of zither wire position error of 38.1 ${\rm\mu}$m (15 % of wire diameter) for a zither of 50 % open-area ratio is found to suppress Tollmien–Schlichting wave growth significantly.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andersson, P., Berggren, M. & Henningson, D. S. 1999 Optimal disturbances and bypass transition in boundary layers. Phys. Fluids 11 (1), 134150.Google Scholar
Andersson, P., Brandt, L., Bottaro, A. & Henningson, D. S. 2001 On the breakdown of boundary layer streaks. J. Fluid Mech. 428, 2960.CrossRefGoogle Scholar
Arnal, D. & Juillen, J. C.1978 Contribution Experimentale a l’etude de la Receptivite d’un Couche Limite Laminaire, a la Turbulence de l’ecoulement General. ONERA Tech. Rep. No. 1 $/$ 5018 AYD.Google Scholar
Bagheri, S. & Hanifi, A. 2007 The stabilizing effect of streaks on Tollmien–Schlichting and oblique waves: a parametric study. Phys. Fluids 19 (7), 1922.Google Scholar
Batchelor, G. K. 2000 An Introduction to Fluid Dynamics, 2nd edn. Cambridge University Press.Google Scholar
Bell, J. H. & Mehta, R. D. 1990 Development of a two-stream mixing layer from tripped and untripped boundary layers. AIAA J. 28 (12), 20342042.Google Scholar
Bohl, J. G. E. v. 1940 Das Verhalten paralleler Luftstrahlen. Ing.-Arch. 11 (4), 295314.CrossRefGoogle Scholar
Boiko, A. V., Westin, K. J. A., Klingmann, B. G. B., Kozlov, V. V. & Alfredsson, P. H. 1994 Experiments in a boundary layer subjected to free stream turbulence. Part 2. The role of TS-waves in the transition process. J. Fluid Mech. 281, 219245.Google Scholar
Böttcher, J. & Wedemeyer, E. 1989 The flow downstream of screens and its influence on the flow in the stagnation region of cylindrical bodies. J. Fluid Mech. 204, 501522.CrossRefGoogle Scholar
Bradshaw, P. 1965 The effect of wind-tunnel screens on nominally two-dimensional boundary layers. J. Fluid Mech. 22 (4), 679687.Google Scholar
de Bray, B. G.1967 Some investigations into the spanwise non-uniformity of nominally two-dimensional incompressible boundary layers downstream of gauze screens. Aeronautical Research Council R & M 3578.Google Scholar
Broadhurst, M. S. & Sherwin, S. J. 2008 The parabolised stability equations for 3D-flows: implementation and numerical stability. Appl. Numer. Maths 58 (7), 10171029.CrossRefGoogle Scholar
Butler, K. M. & Farrell, B. F. 1992 Three-dimensional optimal perturbations in viscous shear flow. Phys. Fluids A 4 (8), 16371650.CrossRefGoogle Scholar
Cheng, M. & Moretti, P. M. 1988 Experimental study of the flow field downstream of a single tube row. Exp. Therm. Fluid Sci. 1 (1), 6974.Google Scholar
Corrsin, S.1944 Investigation of the behavior of parallel two-dimensional air jets. NASA TM 101182.Google Scholar
Cossu, C. & Brandt, L. 2002 Stabilization of Tollmien–Schlichting waves by finite amplitude optimal streaks in the blasius boundary layer. Phys. Fluids 14 (8), 14.CrossRefGoogle Scholar
Cossu, C. & Brandt, L. 2004 On Tollmien–Schlichting-like waves in streaky boundary layers. Eur. J. Mech. (B/Fluids) 23 (6), 815833.Google Scholar
Crow, S. C. 1966 The spanwise perturbation of two-dimensional boundary layers. J. Fluid Mech. 24 (1), 153164.CrossRefGoogle Scholar
Dengel, P. & Fernholz, H. H. 1989 Generation of and measurements in a turbulent boundary layer with zero skin friction. In Advances in Turbulence (ed. Fernholz, H. H. & Fiedler, H. E.), vol. 1, pp. 432437. Springer.Google Scholar
Deyhle, H. & Bippes, H. 1996 Disturbance growth in an unstable three-dimensional boundary layer and its dependence on environmental conditions. J. Fluid Mech. 316, 73113.CrossRefGoogle Scholar
Ellingsen, T. & Palm, E. 1975 Stability of linear flow. Phys. Fluids 18 (4), 487488.Google Scholar
Ertunç, O., Özyilmaz, N., Lienhart, H., Durst, F. & Beronov, K. 2010 Homogeneity of turbulence generated by static-grid structures. J. Fluid Mech. 654, 473500.Google Scholar
Fransson, J. H. M. & Alfredsson, P. H. 2003 On the disturbance growth in an asymptotic suction boundary layer. J. Fluid Mech. 482, 5190.CrossRefGoogle Scholar
Fransson, J. H. M., Brandt, L., Talamelli, A. & Cossu, C. 2005a Experimental study of the stabilization of Tollmien–Schlichting waves by finite amplitude streaks. Phys. Fluids 17 (5), 054110.Google Scholar
Fransson, J. H. M., Matsubara, M. & Alfredsson, P. H. 2005b Transition induced by free-stream turbulence. J. Fluid Mech. 527, 125.Google Scholar
Fransson, J. H. M. & Talamelli, A. 2012 On the generation of steady streamwise streaks in flat-plate boundary layers. J. Fluid Mech. 698, 211234.Google Scholar
Fransson, J. H. M., Talamelli, A., Brandt, L. & Cossu, C. 2006 Delaying transition to turbulence by a passive mechanism. Phys. Rev. Lett. 96 (6), 064501.Google Scholar
Goldstein, M. E. 2014 Effect of free-stream turbulence on boundary layer transition. Phil. Trans. R. Soc. Lond. A 372 (2020), 20130354.Google Scholar
Goldstein, M. E. & Leib, S. J. 1993 Three-dimensional boundary-layer instability and separation induced by small-amplitude streamwise vorticity in the upstream flow. J. Fluid Mech. 246, 2141.Google Scholar
Goldstein, M. E., Leib, S. J. & Cowley, S. J. 1992 Distortion of a flat-plate boundary layer by free-stream vorticity normal to the plate. J. Fluid Mech. 237, 231260.Google Scholar
Gürün, A. M.2006 Interactions of Tollmien–Schlichting waves and stationary transient disturbances. PhD thesis, Case Western University.Google Scholar
Hancock, P. E. 1998 Plane multiple screens in non-uniform flow, with particular application to wind tunnel settling chamber screens. Eur. J. Mech. (B/Fluids) 17 (3), 357369.Google Scholar
Herbert, T. 1988 Secondary instability of boundary layers. Annu. Rev. Fluid Mech. 20, 487526.Google Scholar
Hultgren, L. S. & Gustavsson, L. H. 1981 Algebraic growth of disturbances in a laminar boundary layer. Phys. Fluids 24 (6), 10001004.CrossRefGoogle Scholar
Hunt, L. E.2011 Boundary-layer receptivity to three dimensional roughness arrays on a swept-wing. PhD thesis, Texas A&M University.Google Scholar
Jacobs, R. G. & Durbin, P. A. 2001 Simulations of bypass transition. J. Fluid Mech. 428, 185212.Google Scholar
Kendall, J. M. 1985 Experimental study of disturbances produced in a pre-transitional laminar boundary layer by weak freestream turbulence: AIAA-85-1695. In 18th Fluid Dynamics and Plasmadynamics and Lasers Conference, July 16–18, pp. 110. AIAA.Google Scholar
Kendall, J. M. 1991 Studies on laminar boundary-layer receptivity to freestream turbulence near a leading edge: FED-VOL. 114. In Boundary Layer Stability and Transition to Turbulence, pp. 2330. ASME.Google Scholar
Kendall, J. M. 1998 Experiments on boundary-layer receptivity to freestream turbulence: AIAA-98-0530. In 36th Aerospace Sciences Meeting & Exhibit, January 12–15, pp. 114. AIAA.Google Scholar
Klebanoff, P. S. 1971 Effect of freestream turbulence on a laminar boundary layer. Bull. Amer. Phys. Soc. 10 (11), 1323.Google Scholar
Klebanoff, P. S., Tidstrom, K. D. & Sargent, L. M. 1961 The three-dimensional nature of boundary-layer instability. J. Fluid Mech. 12, 142.Google Scholar
Laws, E. M. & Livesey, J. L. 1978 Flow through screens. Annu. Rev. Fluid Mech. 10, 247266.CrossRefGoogle Scholar
Le Gal, P., Peschard, I., Chauve, M. P. & Takeda, Y. 1996 Collective behavior of wakes downstream a row of cylinders. Phys. Fluids 8 (8), 20972106.Google Scholar
Leib, S. J., Wundrow, D. W. & Goldstein, M. E. 1999 Effect of free-stream turbulence and other vortical disturbances on a laminar boundary layer. J. Fluid Mech. 380, 169203.Google Scholar
Levin, O. & Henningson, D. S. 2003 Exponential vs algebraic growth and transition prediction in boundary layer flow. Flow Turbul. Combust. 70, 183210.Google Scholar
Liu, Y., Zaki, T. A. & Durbin, P. A. 2008a Boundary-layer transition by interaction of discrete and continuous modes. J. Fluid Mech. 604, 199233.Google Scholar
Liu, Y., Zaki, T. A. & Durbin, P. A. 2008b Floquet analysis of secondary instability of boundary layers distorted by Klebanoff streaks and Tollmien–Schlichting waves. Phys. Fluids 20 (12), 124102.Google Scholar
Loehrke, R. I. & Nagib, H. M.1972 Experiments on management of free-stream turbulence. Tech. Rep. AGARD-R-598.Google Scholar
Luchini, P. 2000 Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations. J. Fluid Mech. 404, 289309.Google Scholar
Matsubara, M. & Alfredsson, P. H. 2001 Disturbance growth in boundary layers subjected to free-stream turbulence. J. Fluid Mech. 430, 149168.Google Scholar
Mehta, R. D. 1985 Turbulent boundary layer perturbed by a screen. AIAA J. 23 (9), 13351342.CrossRefGoogle Scholar
Mehta, R. D. & Bradshaw, P. 1979 Design rules for small low speed wind tunnels. Aeronaut. J. 73, 443449 Google Scholar
Mehta, R. D. & Hoffmann, P. H. 1987 Boundary layer two-dimensionality in wind tunnels. Exp. Fluids 5 (5), 358360.Google Scholar
Morgan, P. G. 1960 The stability of flow through porous screens. J. R. Aero. Soc. 64, 359362; (June).Google Scholar
Morkovin, M. V.1979 Observations on streamwise vortices in laminar and turbulent boundary layers. NASA CR 159061.Google Scholar
Nolan, K. P. & Walsh, E. J. 2012 Particle image velocimetry measurements of a transitional boundary layer under free stream turbulence. J. Fluid Mech. 702, 215238.Google Scholar
Ovchinnikov, V., Choudhari, M. M. & Piomelli, U. 2008 Numerical simulations of boundary-layer bypass transition due to high-amplitude free-stream turbulence. J. Fluid Mech. 613, 135169.Google Scholar
Patel, R. P.1964 The effects of wind tunnel screens and honeycombs on the spanwise variation of skin friction in two-dimensional turbulent boundary layers. Tech. Rep. T/N 64-7, McGill University.Google Scholar
Pook, D. A.2013 The origin and effects of free-stream vortical disturbances on boundary layer transition in wind tunnels. PhD thesis, RMIT University.Google Scholar
Pook, D. A. & Watmuff, J. H. 2014 Streak generation in wind tunnels. Phys. Fluids 26 (7), 073605.Google Scholar
Reddy, S. C., Schmid, P. J. & Henningson, D. S. 2008 Pseudospectra of the Orr–Sommerfeld operator. SIAM J. Appl. Maths 53 (1), 1547.Google Scholar
Reed, H. L., Saric, W. S. & Arnal, D. 1996 Linear stability theory applied to boundary layers. Annu. Rev. Fluid Mech. 28, 389428.Google Scholar
Ricco, P. 2009 The pre-transitional Klebanoff modes and other boundary-layer disturbances induced by small-wavelength free-stream vorticity. J. Fluid Mech. 638, 267.Google Scholar
Ricco, P., Luo, J. & Wu, X. 2011 Evolution and instability of unsteady nonlinear streaks generated by free-stream vortical disturbances. J. Fluid Mech. 677, 138.Google Scholar
Scheiman, J. & Brooks, J. D. 1981 Comparison of experimental and theoretical turbulence reduction characteristics for screens, honeycomb, and honeycomb-screen combinations. AIAA J. 18 (8), 638643.Google Scholar
Schlatter, P., Deusebio, E., de Lange, R. & Brandt, L.2011 Numerical study of the stabilisation of boundary-layer disturbances by finite amplitude streaks. Tech. Rep. Swedish e-Science Research Centre, Linne FLOW Centre, KTH Mechanics, Stockholm, Sweden.CrossRefGoogle Scholar
Schmid, P. J. 2007 Nonmodal stability theory. Annu. Rev. Fluid Mech. 39, 129162.Google Scholar
Schrader, L.-U., Brandt, L., Mavriplis, C. & Henningson, D. S. 2010 Receptivity to free-stream vorticity of flow past a flat plate with elliptic leading edge. J. Fluid Mech. 653, 245271.Google Scholar
Schrader, L.-U., Brandt, L. & Zaki, T. A. 2011 Receptivity, instability and breakdown of Görtler flow. J. Fluid Mech. 682, 362396.Google Scholar
Schubauer, G. B., Spangenberg, W. G. & Klebanoff, P. S.1950 Aerodynamic characteristics of damping screens. NACA TN 2001.Google Scholar
Shahinfar, S., Sattarzadeh, S. S. & Fransson, J. H. M. 2014 Passive boundary layer control of oblique disturbances by finite-amplitude streaks. J. Fluid Mech. 749, 136.Google Scholar
Shahinfar, S., Sattarzadeh, S. S., Fransson, J. H. M. & Talamelli, A. 2012 Revival of classical vortex generators now for transition delay. Phys. Rev. Lett. 109 (7), 074501.CrossRefGoogle ScholarPubMed
Swearingen, J. D. & Blackwelder, R. F. 1986 Spacing of streamwise vortices on concave walls. AIAA J. 24 (10), 17061709.Google Scholar
Swearingen, J. D. & Blackwelder, R. F. 1987 The growth and breakdown of streamwise vortices in the presence of a wall. J. Fluid Mech. 182, 255290.Google Scholar
Tan-Atichat, J., Nagib, H. M. & Loehrke, R. I. 1982 Interaction of free-stream turbulence with screens and grids: a balance between turbulence scales. J. Fluid Mech. 114, 501528.Google Scholar
Taylor, G. I. & Batchelor, G. K. 1949 The effect of wire Gauze on small disturbances in a uniform stream. Q. J. Mech. Appl. Maths 2 (1), 127.CrossRefGoogle Scholar
Vaughan, N. J. & Zaki, T. A. 2011 Stability of zero-pressure-gradient boundary layer distorted by unsteady Klebanoff streaks. J. Fluid Mech. 681, 116153.Google Scholar
Watmuff, J. H. 1998 Detrimental effects of almost immeasurably small freestream nonuniformities generated by wind-tunnel screens. AIAA J. 36 (3), 379386.Google Scholar
Watmuff, J. H. 2006 Effects of weak free stream nonuniformity on boundary layer transition. Trans. ASME J. Fluids Engng 128 (2), 247257.Google Scholar
Westin, K. J. A., Boiko, A. V., Klingmann, B. G. B., Kozlov, V. V. & Alfredsson, P. H. 1994 Experiments in a boundary layer subjected to free stream turbulence. Part 1. Boundary layer structure and receptivity. J. Fluid Mech. 281, 193218.Google Scholar
Wu, X., Zhao, D. & Luo, J. 2011 Excitation of steady and unsteady Görtler vortices by free-stream vortical disturbances. J. Fluid Mech. 682, 66100.Google Scholar
Wundrow, D. W. & Goldstein, M. E. 2001 Effect on a laminar boundary layer of small-amplitude streamwise vorticity in the upstream flow. J. Fluid Mech. 426, 229262.Google Scholar
Zaki, T. A. 2013 From streaks to spots and on to turbulence: exploring the dynamics of boundary layer transition. Flow Turbul. Combust. 91 (3), 451473.Google Scholar