Hostname: page-component-68c7f8b79f-kpv4p Total loading time: 0 Render date: 2025-12-17T23:36:09.040Z Has data issue: false hasContentIssue false

Taylor dispersion analysis in a viscoelastic fluid through arbitrarily shaped axisymmetric channels

Published online by Cambridge University Press:  12 December 2025

Carlos Teodoro*
Affiliation:
ESIME Azcapotzalco, Instituto Politécnico Nacional, Avenida de las Granjas 682, Colonia Santa Catarina, Alcaldía Azcapotzalco, 02250 Ciudad de México, CDMX, Mexico Tecnológico Nacional de México, Tecnológico de Estudios Superiores de Ecatepec, Av. Tecnológico S/N Colonia Valle de Anáhuac, Sec. Fuentes, 55210 Ecatepec de Morelos, Estado de México, Mexico
Oscar Bautista*
Affiliation:
ESIME Azcapotzalco, Instituto Politécnico Nacional, Avenida de las Granjas 682, Colonia Santa Catarina, Alcaldía Azcapotzalco, 02250 Ciudad de México, CDMX, Mexico
Federico Méndez
Affiliation:
Departamento de Termofluidos, Facultad de Ingeniería, Universidad Nacional Autónoma de México, Ciudad Universitaria, Alcaldía Coyoacán, 04510 Ciudad de México, CDMX, Mexico
*
Corresponding authors: Carlos Teodoro, carlos_teo@tese.edu.mx; Oscar Bautista, obautista@ipn.mx
Corresponding authors: Carlos Teodoro, carlos_teo@tese.edu.mx; Oscar Bautista, obautista@ipn.mx

Abstract

The dispersion of solutes has been extensively studied due to its important applications in microfluidic devices for mixing, separation and other related processes. Solute dispersion in fluids can be analysed over multiple time scales; however, Taylor dispersion specifically addresses long-term behaviour, which is primarily influenced by advective dispersion. This study investigates Taylor–Aris dispersion in a viscoelastic fluid flowing through axisymmetric channels of arbitrary shape. The fluid’s rheology is described using the simplified Phan-Thien–Tanner (sPTT) model. Although the channel walls are axisymmetric, they can adopt any geometry, provided they maintain small axial slopes. Drawing inspiration from the work of Chang & Santiago (2023 J. Fluid Mech. vol. 976, p. A30) on Newtonian fluids, we have developed a governing equation for solute dynamics that accounts for the combined effects of fluid viscoelasticity, molecular diffusivity and channel geometry. This equation is expressed using key dimensionless parameters: the Weissenberg number, the Péclet number and a shape-dependent dimensionless function. Solving this model allows us to analyse the temporal evolution of the solute distribution, including its mean and variance. Our analysis shows that viscoelasticity significantly decreases the effective solute diffusivity compared with that observed in a Newtonian fluid. Additionally, we have identified a specific combination of parameters that results in zero or negative transient growth of the variance. This finding is illustrated in a phase diagram and provides a means for transient control over dispersion. We validated our results against Brownian dynamics simulations and previous literature, highlighting potential applications for the design and optimisation of microfluidic devices.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Akyildiz, F.T. 2002 Dispersion of a solute in a Poiseuille flow of a viscoelastic fluid. Intl J. Engng Sci. 40, 859872.10.1016/S0020-7225(01)00105-7CrossRefGoogle Scholar
Alessio, B.M., Shim, S., Gupta, A. & Stone, H.A. 2022 Diffusioosmosis-driven dispersion of colloids: a Taylor dispersion analysis with experimental validation. J. Fluid Mech. 942, A23.10.1017/jfm.2022.321CrossRefGoogle Scholar
Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. Lond. A 235, 6777.Google Scholar
Barik, S. & Dalal, D.C. 2019 Multi-scale analysis for concentration distribution in an oscillatory Couette flow. Proc. R. Soc. A: Math. Phys. Engng Sci. 475, 125.10.1098/rspa.2018.0483CrossRefGoogle Scholar
Bolster, D., Dents, M. & Borgne, T.L. 2009 Solute dispersion in channels with periodically varying apertures. Phys. Fluids 21, 056601–1–13.10.1063/1.3131982CrossRefGoogle Scholar
Brenner, H. 1980 Dispersion resulting from flow through spatially periodic porous media. Phil. Trans. R. Soc. A: Math. Phys. Engng Sci. 297, 81133.Google Scholar
Bryden, M.D. & Brenner, H. 1996 Multiple-timescale analysis of Taylor dispersion in converging and diverging flows. J. Fluid Mech. 311, 343359.10.1017/S0022112096002625CrossRefGoogle Scholar
Chang, R. & Santiago, J.G. 2023 Taylor dispersion in arbitrarily shaped axisymmetric channels. J. Fluid Mech. 976, A30.10.1017/jfm.2023.504CrossRefGoogle Scholar
Chatwin, P.C. 1970 The approach to normality of the concentration distribution of a solute in a solvent flowing along a straight pipe. J. Fluid Mech. 43 (2), 321352.10.1017/S0022112070002409CrossRefGoogle Scholar
Chu, H.C.W., Garoff, S., Przybycien, T.M., Tilton, R.D. & Khair, A.S. 2019 a Dispersion in steady and time-oscillatory two-dimensional flows through a parallel-plate channel. Phys. Fluids 31, 022007.10.1063/1.5085006CrossRefGoogle Scholar
Chu, H.C.W., Garoff, S., Tilton, R.D. & Khair, A.S. 2019 b Dispersion in steady and time-oscillatory flows through an eccentric annulus. AIChE J. 66, 112.Google Scholar
Dorfman, K.D. 2009 Taylor–Aris dispersion during lubricaton flow in a periodic channel. Chem. Engng Commun. 197, 3950.10.1080/00986440903070668CrossRefGoogle Scholar
Fan, L.T. & Wang, C.B. 1966 Dispersion of matter in non-Newtonian laminar flow through a circular tube. Proc. R. Soc. A: Math. Phys. Engng Sci. 292, 203208.Google Scholar
Hoagland, D.A. & Prud’Homme, R.K. 1985 Taylor–Aris dispersion arising from flow in a sinusoidal tube. AIChE J. 31, 236–224.Google Scholar
Kirby, B.J. 2010 Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge University Press.Google Scholar
Leal, G. 2007 Advanced Transport Phenomena. Cambridge University Press.10.1017/CBO9780511800245CrossRefGoogle Scholar
Locascio, L.E. 2004 Microfluidic mixing. Anal. Bioanal. Chem. 379, 325327.10.1007/s00216-004-2630-1CrossRefGoogle ScholarPubMed
Mederos, G., Arcos, J., Bautista, O. & Méndez, F. 2020 Hydrodynamics rheological impact of an oscillatory electroosmotic flow on a mass transfer process in a microcapillary with a reversible wall reaction. Phys. Fluids 32, 122003–1–16.10.1063/5.0027818CrossRefGoogle Scholar
Mukherjee, S., Dhar, J., DasGupta, S. & Chakraborty, S. 2019 Patterned surface charges coupled with thermal gradients may create giant augmentations of solute dispersion in electro-osmosis of viscoelastic fluids. Proc. R. Soc. A: Math. Phys. Engng Sci. 475, 118.10.1098/rspa.2018.0522CrossRefGoogle ScholarPubMed
Muñoz, J., Arcos, J., Bautista, O. & Méndez, F. 2018 Slippage effect on the dispersion coefficient of a passive solute in a pulsatile electro-osmotic flow in a microcapillary. Phys. Rev. Fluids 3, 084503–1–25.10.1103/PhysRevFluids.3.084503CrossRefGoogle Scholar
Nakad, M., Witelski, T., Domec, J.C., Sevanto, S. & Katul, G. 2021 Taylor dispersion in osmotically driven laminar flows in phloem. J. Fluid Mech. 913, A44.10.1017/jfm.2021.56CrossRefGoogle Scholar
Naragani, P. & Sebastian, B.T. 2012 Dispersion of a solute in pulsatile non-Newtonian fluid flow through a tube. Acta Mechanica 224, 571585.10.1007/s00707-012-0753-6CrossRefGoogle Scholar
Oliveira, P.J. & Pinho, F.T. 1999 Analytical solution for fully developed channel and pipe flow of Phan-Thien–Tanner fluids. J. Fluid Mech. 387, 271280.10.1017/S002211209900453XCrossRefGoogle Scholar
Phan-Thien, N. & Tanner, R.I. 1977 A new constitutive equation derived from network theory. J. Non-Newtonian Fluid Mech. 2, 353365.10.1016/0377-0257(77)80021-9CrossRefGoogle Scholar
Rana, J. & Murthy, P.V.S.N. 2016 Unsteady solute dispersion in non-Newtonian fluid flow in a tube with wall absorption. Proc. R. Soc. A: Math. Phys. Engng Sci. 472, 122.10.1098/rspa.2016.0294CrossRefGoogle Scholar
Smith, R. 1983 Longitudinal dispersion coefficients for varying channels. J. Fluid Mech. 130, 299314.10.1017/S002211208300110XCrossRefGoogle Scholar
Stone, H.A. & Brenner, H. 1999 Dispersion in flows with streamwise variations of mean velocity: radial flow. Ind. Engng Chem. Res. 38, 851854.10.1021/ie980355fCrossRefGoogle Scholar
Stone, H.A., Stroock, A.D. & Ajdari, A. 2004 Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu. Rev. Fluid Mech. 36, 381411.10.1146/annurev.fluid.36.050802.122124CrossRefGoogle Scholar
Taylor, G.I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. Lond. A 219, 186203.Google Scholar
Teodoro, C., Bautista, O. & Méndez, F. 2019 Mass transport and separation of species in an oscillating electroosmotic flow caused by distinct periodic electric fields. Phys. Scr. 94, 115012.10.1088/1402-4896/ab2a9aCrossRefGoogle Scholar
Thurston, G.B. 1972 Viscoelasticity of human blood. Biophys J. 12 (9), 12051217.10.1016/S0006-3495(72)86156-3CrossRefGoogle ScholarPubMed
Vikhansky, A. & Ginzburg, I. 2014 Taylor dispersion in heterogeneous porous media: extended method of moments, theory, and modelling with two-relaxation-times lattice Boltzmann scheme. Phys. Fluids 26, 022104–1–52.10.1063/1.4864631CrossRefGoogle Scholar
Wu, J. & Gu, M. 2011 Microfluidic sensing: state of the art fabrication and detection techniques. J. Biomed. Opt. 16 (8), 080901–1–12.10.1117/1.3607430CrossRefGoogle ScholarPubMed