Published online by Cambridge University Press: 27 May 2010
When a charged particle moves along a charged wall in a polar fluid, it experiences an electroviscous lift force normal to the surface and an electroviscous drag, superimposed on the viscous drag, parallel to the surface. Here a theoretical analysis is presented to determine the electroviscous drag on a charged spherical particle surrounded by a thin electrical double layer near a charged plane wall, when the particle translates parallel to the wall without rotation, in a symmetric electrolyte solution at rest. The electroviscous (electro-hydrodynamic) forces, arising from the coupling between the electrical and hydrodynamic equations, are determined as a solution of three partial differential equations, for electroviscous ion concentration (perturbed ion clouds), electroviscous potential (perturbed electric potential) and electroviscous or electro-hydrodynamic flow field (perturbed flow field). The problem was previously solved for small gap widths and low Peclet numbers in the inner region around the gap between the sphere and the wall, using lubrication theory. Here the restriction on the particle–wall distances is removed, and an analytical and numerical solution is obtained valid for the whole domain of interest. For large sphere–wall separations the solution approaches that for the electroviscous drag on an isolated sphere in an unbounded fluid. For small particle–wall distances it differs from that obtained by the use of lubrication theory, showing that lubrication theory is inadequate for electroviscous problems. The analytical results are in complete agreement with the full numerical calculations. For small particle–wall distances a model is given which provides both physical insight and an easy way to calculate the force with high precision.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.