Hostname: page-component-68c7f8b79f-xmwfq Total loading time: 0 Render date: 2025-12-19T05:14:52.471Z Has data issue: false hasContentIssue false

Symmetry-breaking bifurcations and subharmonic lock-in of a flexible splitter plate in cylinder wake flow

Published online by Cambridge University Press:  18 December 2025

Baiyang Song
Affiliation:
State Key Laboratory of Ocean Engineering, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China
Huan Ping
Affiliation:
College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, PR China
Wen-Li Chen
Affiliation:
School of Civil Engineering, Harbin Institute of Technology, Harbin 150001, PR China
Yong Cao*
Affiliation:
State Key Laboratory of Ocean Engineering, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China Chongqing Research Institute, Shanghai Jiao Tong University, Chongqing 401135, PR China
Dai Zhou*
Affiliation:
State Key Laboratory of Ocean Engineering, School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, PR China Shenzhen Research Institute of Shanghai Jiao Tong University, Shenzhen 518063, PR China
*
Corresponding authors: Yong Cao, yongcao@sjtu.edu.cn; Dai Zhou, zhoudai@sjtu.edu.cn
Corresponding authors: Yong Cao, yongcao@sjtu.edu.cn; Dai Zhou, zhoudai@sjtu.edu.cn

Abstract

This paper investigates the flow past a flexible splitter plate attached to the rear of a fixed circular cylinder at low Reynolds number 150. A systematic exploration of the plate length ($L/D$), flexibility coefficient ($S^{*}$) and mass ratio ($m^{*}$) reveals new laws and phenomena. The large-amplitude vibration of the structure is attributed to a resonance phenomenon induced by fluid–structure interaction. The modal decomposition indicates that resonance arises from the coupling between the first and second structural modes, where the excitation of the second structural mode plays a critical role. Due to the combined effects of added mass and periodic stiffness variations, the two modes become synchronised, oscillating at the same frequency while maintaining fixed phase difference $\pi /2$. This further results in the resonant frequency being locked at half of the second natural frequency, which is approximately three times the first natural frequency. A reduction in plate length and an increase in mass ratio are both associated with a narrower resonant locking range, while a higher mass ratio also shifts this range towards lower frequencies. A symmetry-breaking bifurcation is observed for cases with $L/D\leqslant 3.5$, whereas for $L/D=4.0$, the flow remains in a steady state with a stationary splitter plate prior to the onset of resonance. For cases with a short flexible plate and a high mass ratio, the shortened resonance interval causes the plate to return to the symmetry-breaking stage after resonance, gradually approaching an equilibrium position determined by the flow field characteristics at high flexibility coefficients.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Agnaou, M., Lasseux, D. & Ahmadi, A. 2016 From steady to unsteady laminar flow in model porous structures: an investigation of the first Hopf bifurcation. Comput. Fluids 136, 6782.10.1016/j.compfluid.2016.05.030CrossRefGoogle Scholar
Åkervik, E., Brandt, L., Henningson, D.S., Hœpffner, J., Marxen, O. & Schlatter, P. 2006 Steady solutions of the Navier–Stokes equations by selective frequency damping. Phys. Fluids 18 (6), 068102.10.1063/1.2211705CrossRefGoogle Scholar
Alben, S. & Shelley, M. 2005 Coherent locomotion as an attracting state for a free flapping body. Proc. Natl Acad. Sci. USA 102 (32), 1116311166.10.1073/pnas.0505064102CrossRefGoogle Scholar
Apelt, C.J. & West, G.S. 1975 The effects of wake splitter plates on bluff-body flow in the range 104 < r <5 $\times$ 104. Part 2. J. Fluid Mech. 71 (1), 145160.CrossRefGoogle Scholar
Apelt, C.J., West, G.S. & Szewczyk, A.A. 1973 The effects of wake splitter plates on the flow past a circular cylinder in the range 104 < r < 5 $\times$ 104 . J. Fluid Mech. 61 (1), 187198.CrossRefGoogle Scholar
Arnoldi, W.E. 1951 The principle of minimized iterations in the solution of the matrix eigenvalue problem. Q. Appl. Math. 9 (1), 1729.10.1090/qam/42792CrossRefGoogle Scholar
Assi, G.R.S., Bearman, P.W. & Kitney, N. 2009 Low drag solutions for suppressing vortex-induced vibration of circular cylinders. J. Fluids Struct. 25 (4), 666675.10.1016/j.jfluidstructs.2008.11.002CrossRefGoogle Scholar
Barkley, D. & Henderson, R.D. 1996 Three-dimensional Floquet stability analysis of the wake of a circular cylinder. J. Fluid Mech. 322, 215241.10.1017/S0022112096002777CrossRefGoogle Scholar
Behrens, T. 2009 OpenFOAM’s basic solvers for linear systems of equations. Tech. Rep. No. 18/02. Department of Applied Mechanics, Chalmers University of Technology.Google Scholar
Cao, S., Zhou, Q. & Zhou, Z. 2014 Velocity shear flow over rectangular cylinders with different side ratios. Comput. Fluids 96, 3546.CrossRefGoogle Scholar
Cao, Y., Tamura, T. & Kawai, H. 2019 Investigation of wall pressures and surface flow patterns on a wall-mounted square cylinder using very high-resolution Cartesian mesh. J. Wind Engng Ind. Aerodyn. 188, 118.10.1016/j.jweia.2019.02.013CrossRefGoogle Scholar
Cao, Y., Tamura, T., Zhou, D., Bao, Y. & Han, Z. 2022 Topological description of near-wall flows around a surface-mounted square cylinder at high Reynolds numbers. J. Fluid Mech. 933, A39.10.1017/jfm.2021.1043CrossRefGoogle Scholar
Carmo, B.S., Sherwin, S.J., Bearman, P.W. & Willden, R.H.J. 2008 Wake transition in the flow around two circular cylinders in staggered arrangements. J. Fluid Mech. 597, 129.10.1017/S0022112007009639CrossRefGoogle Scholar
Chen, J., Quan, Y. & Gu, M. 2020 Aerodynamic interference effects of a proposed super high-rise building on the aerodynamic forces and responses of an existing building. J. Wind Engng Ind. Aerodyn. 206, 104312.10.1016/j.jweia.2020.104312CrossRefGoogle Scholar
Chourdakis, G. et al. 2022 preCICE v2: a sustainable and user-friendly coupling library [version 2; peer review: 2 approved]. Open Res. Europe 2, 51.10.12688/openreseurope.14445.1CrossRefGoogle ScholarPubMed
Chyu, M.K. & Natarajan, V. 1996 Heat transfer on the base surface of threedimensional protruding elements. Intl J. Heat Mass Transfer 39 (14), 29252935.CrossRefGoogle Scholar
Crawford, J.D. & Knobloch, E. 1991 Symmetry and symmetry-breaking bifurcations in fluid dynamics. Annu. Rev. Fluid Mech. 23, 341387, 1991.10.1146/annurev.fl.23.010191.002013CrossRefGoogle Scholar
Cummins, C., Seale, M., Macente, A., Certini, D., Mastropaolo, E., Viola, I.M. & Nakayama, N. 2018 A separated vortex ring underlies the flight of the dandelion. Nature 562 (7727), 414418.10.1038/s41586-018-0604-2CrossRefGoogle ScholarPubMed
Defraeye, T., Blocken, B. & Carmeliet, J. 2010 CFD analysis of convective heat transfer at the surfaces of a cube immersed in a turbulent boundary layer. Intl J. Heat Mass Transfer 53 (1–3), 297308.10.1016/j.ijheatmasstransfer.2009.09.029CrossRefGoogle Scholar
Dušek, J., Gal, P.L. & Fraunié, P. 1994 A numerical and theoretical study of the first Hopf bifurcation in a cylinder wake. J. Fluid Mech. 264, 5980.CrossRefGoogle Scholar
Furquan, M. & Mittal, S. 2021 Multiple lock-ins in vortex-induced vibration of a filament. J. Fluid Mech. 916, R1.10.1017/jfm.2021.209CrossRefGoogle Scholar
Gadêlha, H., Gaffney, E.A., Smith, D.J. & Kirkman-Brown, J.C. 2010 Nonlinear instability in flagellar dynamics: a novel modulation mechanism in sperm migration? J. R. Soc. Interface 7 (53), 16891697.10.1098/rsif.2010.0136CrossRefGoogle ScholarPubMed
Karayiannis, N.B. & Randolph-Gips, M.M. 2003 On the construction and training of reformulated radial basis function neural networks. IEEE Trans. Neural Networks 14 (4), 835846.CrossRefGoogle ScholarPubMed
Kim, Y.C., Tamura, Y. & Yoon, S.-W. 2015 Proximity effect on low-rise building surrounded by similar-sized buildings. J. Wind Engng Ind. Aerodyn. 146, 150162.CrossRefGoogle Scholar
Kwon, K. & Choi, H. 1996 Control of laminar vortex shedding behind a circular cylinder using splitter plates. Phys. Fluids 8 (2), 479486.CrossRefGoogle Scholar
Lācis, U., Brosse, N., Ingremeau, F., Mazzino, A., Lundell, F., Kellay, H. & Bagheri, S. 2014 Passive appendages generate drift through symmetry breaking. Nat. Commun. 5 (1), 5310.10.1038/ncomms6310CrossRefGoogle ScholarPubMed
Lee, J. & You, D. 2013 Study of vortex-shedding-induced vibration of a flexible splitter plate behind a cylinder. Phys. Fluids 25 (11), 110811.10.1063/1.4819346CrossRefGoogle Scholar
Leontini, J.S., Thompson, M.C. & Hourigan, K. 2007 Three-dimensional transition in the wake of a transversely oscillating cylinder. J. Fluid Mech. 577, 79104.10.1017/S0022112006004320CrossRefGoogle Scholar
Lim, H.C., Castro, I.P. & Hoxey, R.P. 2007 Bluff bodies in deep turbulent boundary layers: Reynolds-number issues. J. Fluid Mech. 571, 97118.10.1017/S0022112006003223CrossRefGoogle Scholar
Mamun, C.K. & Tuckerman, L.S. 1995 Asymmetry and Hopf bifurcation in spherical Couette flow. Phys. Fluids 7 (1), 8091.10.1063/1.868730CrossRefGoogle Scholar
Mehl, M., Uekermann, B., Bijl, H., Blom, D., Gatzhammer, B. & van Zuijlen, A. 2016 Parallel coupling numerics for partitioned fluid–structure interaction simulations. Comput. Math. Appl. 71 (4), 869891.CrossRefGoogle Scholar
Nozawa, K. & Tamura, T. 2002 Large eddy simulation of the flow around a low-rise building immersed in a rough-wall turbulent boundary layer. J. Wind Engng Ind. Aerodyn. 90 (10), 11511162.CrossRefGoogle Scholar
Pfister, J.-L. & Marquet, O. 2020 Fluid–structure stability analyses and nonlinear dynamics of flexible splitter plates interacting with a circular cylinder flow. J. Fluid Mech. 896, A24.CrossRefGoogle Scholar
Ping, H., Zhu, H., Zhang, K., Wang, R., Zhou, D., Bao, Y. & Han, Z. 2020 Wake dynamics behind a rotary oscillating cylinder analyzed with proper orthogonal decomposition. Ocean Engng 218, 108185.10.1016/j.oceaneng.2020.108185CrossRefGoogle Scholar
Prasanth, T.K. & Mittal, S. 2008 Vortex-induced vibrations of a circular cylinder at low Reynolds numbers. J. Fluid Mech. 594, 463491.10.1017/S0022112007009202CrossRefGoogle Scholar
Roshko, A. 1954 On the drag and shedding frequency of two-dimensional bluff bodies. Tech. Rep. No. 3169. NACA (National Advisory Committee for Aeronautics).Google Scholar
Saad, Y. 1980 Variations on Arnoldi’s method for computing eigenelements of large unsymmetric matrices. Linear Algebr. Appl. 34, 269295.10.1016/0024-3795(80)90169-XCrossRefGoogle Scholar
Sahu, T.R., Furquan, M. & Mittal, S. 2019 Numerical study of flow-induced vibration of a circular cylinder with attached flexible splitter plate at low Re . J. Fluid Mech. 880, 551593.10.1017/jfm.2019.699CrossRefGoogle Scholar
Sahu, T.R., Furquan, M. & Mittal, S. 2023 Symmetry-breaking response of a flexible splitter plate attached to a circular cylinder in uniform flow. Phys. Fluids 35 (12), 123609.10.1063/5.0177041CrossRefGoogle Scholar
Shukla, S., Govardhan, R.N. & Arakeri, J.H. 2009 Flow over a cylinder with a hinged-splitter plate. J. Fluids Struct. 25 (4), 713720.10.1016/j.jfluidstructs.2008.11.004CrossRefGoogle Scholar
Song, B., Bao, Y., Zhang, K., Zhou, D. & Cao, Y. 2024 Wake suppression of a cylinder immersed in turbulence using rotating rods. Phys. Fluids 36 (1), 015117.CrossRefGoogle Scholar
Song, B., Ping, H., Zhu, H., Zhou, D., Bao, Y., Cao, Y. & Han, Z. 2022 Direct numerical simulation of flow over a cylinder immersed in the grid-generated turbulence. Phys. Fluids 34 (1), 015109.10.1063/5.0072730CrossRefGoogle Scholar
Unal, M.F. & Rockwell, D. 1988 On vortex formation from a cylinder. Part 2. Control by splitter-plate interference. J. Fluid Mech. 190, 513529.10.1017/S0022112088001430CrossRefGoogle Scholar
Vandenberghe, N., Zhang, J. & Childress, S. 2004 Symmetry breaking leads to forward flapping flight. J. Fluid Mech. 506, 147155.10.1017/S0022112004008468CrossRefGoogle Scholar
Wang, R., Bao, Y., Zhou, D., Zhu, H., Ping, H., Han, Z., Serson, D. & Xu, H. 2019 Flow instabilities in the wake of a circular cylinder with parallel dual splitter plates attached. J. Fluid Mech. 874, 299338.10.1017/jfm.2019.439CrossRefGoogle Scholar
Williamson, C.H.K. 1996 Three-dimensional wake transition. J. Fluid Mech. 328, 345407.10.1017/S0022112096008750CrossRefGoogle Scholar
Williamson, C.H.K. & Roshko, A. 1988 Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2 (4), 355381.CrossRefGoogle Scholar
Wu, J., Qiu, Y.L., Shu, C. & Zhao, N. 2014 Flow control of a circular cylinder by using an attached flexible filament. Phys. Fluids 26 (10), 103601.10.1063/1.4896942CrossRefGoogle Scholar
Zhao, F., Wang, R., Zhu, H., Cao, Y., Bao, Y., Zhou, D., Cheng, B. & Han, Z. 2024 Free-surface effects on the flow around two circular cylinders in tandem. J. Fluid Mech. 1001, A7.10.1017/jfm.2024.1066CrossRefGoogle Scholar