Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-26T03:39:12.996Z Has data issue: false hasContentIssue false

A swirling spiral wave solution in pipe flow

Published online by Cambridge University Press:  20 November 2013

K. Deguchi*
Affiliation:
Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
A. G. Walton*
Affiliation:
Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
*
Email addresses for correspondence: k.deguchi@imperial.ac.uk, a.walton@imperial.ac.uk
Email addresses for correspondence: k.deguchi@imperial.ac.uk, a.walton@imperial.ac.uk

Abstract

A numerically exact full Navier–Stokes counterpart of the asymptotic nonlinear solution in Hagen–Poiseuille flow proposed by Smith & Bodonyi (Proc. R. Soc. A, vol. 384, 1982, pp. 463–489) is discovered. The solution takes the form of a spiral travelling wave, with a novel feature being a strong induced component of swirl. Our solution shows excellent quantitative agreement with the asymptotic theory at Reynolds numbers of the order of $1{0}^{8} $.

Type
Rapids
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Benney, D. J. & Bergeron, R. F. 1969 A new class of nonlinear waves in parallel flows. Stud. Appl. Maths 48, 181204.CrossRefGoogle Scholar
Deguchi, K., Hall, P. & Walton, A. G. 2013 The emergence of localized vortex–wave interaction states in plane Couette flow. J. Fluid Mech. 721, 5885.CrossRefGoogle Scholar
Deguchi, K. & Walton, A. G. 2013 Axisymmetric travelling waves in annular sliding Couette flow at finite and asymptotically large Reynolds number. J. Fluid Mech. 720, 582617.CrossRefGoogle Scholar
Duguet, Y., Willis, A. P. & Kerswell, R. R. 2008 Transition in pipe flow: the saddle structure on the boundary of turbulence. J. Fluid Mech. 613, 255274.CrossRefGoogle Scholar
Faisst, H. & Eckhardt, B. 2003 Traveling waves in pipe flow. Phys. Rev. Lett. 91, 224502.CrossRefGoogle ScholarPubMed
Hall, P. & Sherwin, S. 2010 Streamwise vortices in shear flows: harbingers of transition and the skeleton of coherent structures. J. Fluid Mech. 661, 178205.CrossRefGoogle Scholar
Hall, P. & Smith, F. T. 1991 On strongly nonlinear vortex/wave interactions in boundary-layer transition. J. Fluid Mech. 227, 641666.CrossRefGoogle Scholar
Hultmark, M., Vallikivi, M., Bailey, S. C. C. & Smits, A. J. 2012 Turbulent pipe flow at extreme Reynolds numbers. Phys. Rev. Lett. 108, 094501.CrossRefGoogle ScholarPubMed
Landman, M. J. 1990 On the generation of helical waves in circular pipe flow. Phys. Fluids 2, 738747.CrossRefGoogle Scholar
Meseguer, A. & Trefethen, L. N. 2003 Linearized pipe flow to Reynolds numbers $1{0}^{7} $ . J. Comput. Phys. 186, 178197.CrossRefGoogle Scholar
Pashtrapanska, M., Jovanovic, J., Lienhart, H. & Durst, F. 2006 Turbulence measurements in a swirling pipe flow. Exp. Fluids 41, 813827.CrossRefGoogle Scholar
Pringle, C. C. T. & Kerswell, R. R. 2007 Asymmetric, helical and mirror-symmetric travelling waves in pipe flow. Phys. Rev. Lett. 99, 074502.CrossRefGoogle ScholarPubMed
Reynolds, O. 1883 An experimental investigation of the circumstances which determine whether the motion of water will be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. R. Soc. Lond. A 174, 935982.Google Scholar
Rocklage-Marliani, G., Schmidts, M. & Ram, V. I. V. 2003 Three-dimensional laser-Doppler velocimeter measurements in swirling turbulent pipe flow. Flow Turbul. Combust. 70, 4367.CrossRefGoogle Scholar
Smith, F. T. & Bodonyi, R. J. 1982a Amplitude-dependent neutral modes in the Hagen–Poiseuille flow through a circular pipe. Proc. R. Soc. Lond. A 384, 463489 (referred to herein as SB).Google Scholar
Smith, F. T. & Bodonyi, R. J. 1982b Nonlinear critical layers and their development in streaming-flow stability. J. Fluid Mech. 118, 165185.CrossRefGoogle Scholar
Smith, F. T., Doorly, D. J. & Rothmayer, A. P. 1990 On displacement-thickness, wall-layer and mid-flow scales in turbulent boundary-layers and slugs of vorticity in channel and pipe flows. Proc. R. Soc. Lond. A 428, 255281.Google Scholar
Szymanski, P. 1932 Quelques solutions exactes des équations de l’hydrodynamique du fluide visqueux dans le cas d’un tube cylindrique. J. Math. Pures Appl. 11, 67107.Google Scholar
Toplosky, N. & Akylas, T. R. 1988 Nonlinear spiral waves in rotating pipe flow. J. Fluid Mech. 190, 3954.CrossRefGoogle Scholar
Waleffe, F. 1998 Three-dimensional coherent states in plane shear flows. Phys. Rev. Lett. 81 (19), 41404143.CrossRefGoogle Scholar
Walton, A. G. 2002 The temporal evolution of neutral modes in the impulsively started flow through a circular pipe and their connection to the nonlinear stability of Hagen–Poiseuille flow. J. Fluid Mech. 457, 339376 (referred to herein as W2002).CrossRefGoogle Scholar
Walton, A. G. 2005 The stability of nonlinear neutral modes in Hagen–Poiseuille flow. Proc. R. Soc. Lond. A 461, 813824.Google Scholar
Wedin, H. & Kerswell, R. R. 2004 Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech. 508, 333371.CrossRefGoogle Scholar