Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T02:23:09.568Z Has data issue: false hasContentIssue false

Swinging and tumbling of multicomponent vesicles in flow

Published online by Cambridge University Press:  03 February 2022

Prerna Gera
Affiliation:
Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53711, USA
David Salac
Affiliation:
Department of Mechanical and Aerospace Engineering, University at Buffalo, Buffalo, NY 14260, USA
Saverio E. Spagnolie*
Affiliation:
Department of Mathematics, University of Wisconsin-Madison, Madison, WI 53711, USA Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53711, USA
*
Email address for correspondence: spagnolie@math.wisc.edu

Abstract

Biological membranes are host to proteins and molecules which may form domain-like structures resulting in spatially varying material properties. Vesicles with such heterogeneous membranes can exhibit intricate shapes at equilibrium and rich dynamics when placed into a flow. Under the assumption of small deformations and a two-dimensional system, we develop a reduced-order model to describe the fluid-structure interaction between a viscous background shear flow and an inextensible membrane with spatially varying bending stiffness and spontaneous curvature. Material property variations of a critical magnitude, relative to the flow rate and internal/external viscosity contrast, can set off a qualitative change in the vesicle dynamics. A membrane of nearly constant bending stiffness or spontaneous curvature undergoes a small amplitude swinging motion (which includes tangential tank-treading), while for large enough material variations the dynamics pass through a regime featuring tumbling and periodic phase-lagging of the membrane material, and ultimately for very large material variation to a rigid-body tumbling behaviour. Distinct differences are found for even and odd spatial modes of domain distribution. Full numerical simulations are used to probe the theoretical predictions, which appear valid even when studying substantially deformed membranes.

Type
JFM Papers
Copyright
© The Author(s), 2022. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abkarian, M., Faivre, M. & Viallat, A. 2007 Swinging of red blood cells under shear flow. Phys. Rev. Lett. 98 (18), 188302.CrossRefGoogle ScholarPubMed
Abkarian, M. & Viallat, A. 2008 Vesicles and red blood cells in shear flow. Soft Matt. 4 (4), 653657.CrossRefGoogle ScholarPubMed
Abreu, D., Levant, M., Steinberg, V. & Seifert, U. 2014 Fluid vesicles in flow. Adv. Colloid Interface Sci. 208, 129141.CrossRefGoogle ScholarPubMed
Ahmadpoor, F. & Sharma, P. 2016 Thermal fluctuations of vesicles and nonlinear curvature elasticity—implications for size-dependent renormalized bending rigidity and vesicle size distribution. Soft Matt. 12 (9), 25232536.CrossRefGoogle ScholarPubMed
Balay, S., et al. 2018 PETSc users manual. Tech. Rep. ANL-95/11 – Revision 3.9. Argonne National Laboratory.Google Scholar
Balay, S., Brown, F., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F. & Zhang, H. 2012 PETSc web page http://www.mcs.anl.gov/petsc.Google Scholar
Balay, S., Gropp, W.D., McInnes, L.C. & Smith, B.F. 1997 Efficient management of parallelism in object oriented numerical software libraries. In Modern Software Tools in Scientific Computing (ed. E. Arge, A.M. Bruaset & H.P. Langtangen), pp. 163–202. Birkhäuser.CrossRefGoogle Scholar
Barrett, J.W., Garcke, H. & Nürnberg, R. 2017 Finite element approximation for the dynamics of fluidic two-phase biomembranes. ESAIM: Math. Model. Numer. Anal. 51 (6), 23192366.CrossRefGoogle Scholar
Barthes-Biesel, D. 1980 Motion of a spherical microcapsule freely suspended in a linear shear flow. J. Fluid Mech. 100 (4), 831853.CrossRefGoogle Scholar
Barthes-Biesel, D. 1991 Role of interfacial properties on the motion and deformation of capsules in shear flow. Physica A 172, 103124.CrossRefGoogle Scholar
Barthes-Biesel, D. 2016 Motion and deformation of elastic capsules and vesicles in flow. Annu. Rev. Fluid Mech. 48, 2552.CrossRefGoogle Scholar
Barthes-Biesel, D. & Rallison, J.M. 1981 The time-dependent deformation of a capsule freely suspended in a linear shear flow. J. Fluid Mech. 113, 251267.CrossRefGoogle Scholar
Baumgart, T., Das, S., Webb, W.W. & Jenkins, J.T. 2005 Membrane elasticity in giant vesicles with fluid phase coexistence. Biophys. J. 89 (2), 10671080.CrossRefGoogle ScholarPubMed
Baumgart, T., Hess, S.T. & Webb, W.W 2003 Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425 (6960), 821824.CrossRefGoogle ScholarPubMed
Bender, C.M. & Orszag, S.A. 2013 Advanced Mathematical Methods for Scientists and Engineers I: Asymptotic Methods and Perturbation Theory. Springer Science & Business Media.Google Scholar
Cox, G. & Lowengrub, J. 2015 The effect of spontaneous curvature on a two-phase vesicle. Nonlinearity 28 (3), 773793.CrossRefGoogle ScholarPubMed
Dahl, J.B., Narsimhan, V., Gouveia, B., Kumar, S., Shaqfeh, E.S.G. & Muller, S.J. 2016 Experimental observation of the asymmetric instability of intermediate-reduced-volume vesicles in extensional flow. Soft Matt. 12 (16), 37873796.CrossRefGoogle ScholarPubMed
Dao, M., Lim, C.T. & Suresh, S. 2003 Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51 (11–12), 22592280.CrossRefGoogle Scholar
Deschamps, J., Kantsler, V., Segre, E & Steinberg, V. 2009 a Dynamics of a vesicle in general flow. Proc. Natl Acad. Sci. USA 106 (28), 1144411447.CrossRefGoogle ScholarPubMed
Deschamps, J., Kantsler, V. & Steinberg, V. 2009 b Phase diagram of single vesicle dynamical states in shear flow. Phys. Rev. Lett. 102 (11), 118105.CrossRefGoogle ScholarPubMed
Deserno, M. 2015 Fluid lipid membranes: from differential geometry to curvature stresses. Chem. Phys. Lipids 185, 1145.CrossRefGoogle ScholarPubMed
Edidin, M. 2003 The state of lipid rafts: from model membranes to cells. Annu. Rev. Biophys. Biomol. Struct. 32 (1), 257283.CrossRefGoogle ScholarPubMed
Elliott, C.M. & Stinner, B. 2013 Computation of two-phase biomembranes with phase dependent material parameters using surface finite elements. Commun. Math. Phys. 13 (2), 325360.Google Scholar
Engelhardt, H., Duwe, H.P. & Sackmann, E. 1985 Bilayer bending elasticity measured by Fourier analysis of thermally excited surface undulations of flaccid vesicles. J. Phys. Lett. 46 (8), 395400.CrossRefGoogle Scholar
Evans, E.A. 1983 Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipet aspiration tests. Biophys. J. 43 (1), 2730.CrossRefGoogle ScholarPubMed
Faizi, H.A., Reeves, C.J., Georgiev, V.N., Vlahovska, P.M. & Dimova, R. 2020 Fluctuation spectroscopy of giant unilamellar vesicles using confocal and phase contrast microscopy. Soft Matt. 16 (39), 89969001.CrossRefGoogle Scholar
Finken, R., Lamura, A., Seifert, U. & Gompper, G. 2008 Two-dimensional fluctuating vesicles in linear shear flow. Eur. Phys. J. E 25 (3), 309321.CrossRefGoogle ScholarPubMed
Freund, J.B. 2014 Numerical simulation of flowing blood cells. Annu. Rev. Fluid Mech. 46, 6795.CrossRefGoogle Scholar
Gao, T. & Li, Z. 2017 Self-driven droplet powered by active nematics. Phys. Rev. Lett. 119 (10), 108002.CrossRefGoogle ScholarPubMed
Gera, P. & Salac, D. 2018 a Modeling of multicomponent three-dimensional vesicles. Comput. Fluids 172, 362383.CrossRefGoogle Scholar
Gera, P. & Salac, D. 2018 b Three-dimensional multicomponent vesicles: dynamics and influence of material properties. Soft Matt. 14 (37), 76907705.CrossRefGoogle ScholarPubMed
Guckenberger, A. & Gekle, S. 2017 Theory and algorithms to compute Helfrich bending forces: a review. J. Phys.: Condens. Matter 29 (20), 203001.Google ScholarPubMed
Hatami-Marbini, H. & Mofrad, M.R.K. 2015 Rheology and mechanics of the cytoskeleton. In Complex Fluids in Biological Systems (ed. S.E. Spagnolie), pp. 187–205. Springer.CrossRefGoogle Scholar
Hu, J., Weikl, T. & Lipowsky, R. 2011 Vesicles with multiple membrane domains. Soft Matt. 7 (13), 60926102.CrossRefGoogle Scholar
Kantsler, V., Segre, E. & Steinberg, V. 2008 Dynamics of interacting vesicles and rheology of vesicle suspension in shear flow. Europhys. Lett. 82 (5), 58005.CrossRefGoogle Scholar
Kantsler, V. & Steinberg, V. 2006 Transition to tumbling and two regimes of tumbling motion of a vesicle in shear flow. Phys. Rev. Lett. 96 (3), 036001.CrossRefGoogle ScholarPubMed
Keller, S.R. & Skalak, R. 1982 Motion of a tank-treading ellipsoidal particle in a shear-flow. J. Fluid Mech. 120, 2747.CrossRefGoogle Scholar
Kessler, S., Finken, R. & Seifert, U. 2008 Swinging and tumbling of elastic capsules in shear flow. J. Fluid Mech. 605, 207226.CrossRefGoogle Scholar
Kolahdouz, E.M. & Salac, D. 2015 Electrohydrodynamics of three-dimensional vesicles: a numerical approach. SIAM J. Sci. Comput. 37 (3), B473B494.CrossRefGoogle Scholar
Kumar, A. & Graham, M.D. 2015 Cell distribution and segregation phenomena during blood flow. In Complex Fluids in Biological Systems (ed. S.E. Spagnolie), pp. 399–435. Springer.CrossRefGoogle Scholar
Lebedev, V.V., Turitsyn, K.S. & Vergeles, S.S. 2008 Nearly spherical vesicles in an external flow. New J. Phys. 10 (4), 043044.CrossRefGoogle Scholar
Lebedev, V.V., Turitsyn, K.S. & Vergeles, S.S. 2007 Dynamics of nearly spherical vesicles in an external flow. Phys. Rev. Lett. 99, 218101.CrossRefGoogle Scholar
Li, S., Lowengrub, J. & Voigt, A. 2012 Locomotion, wrinkling, and budding of a multicomponent vesicle in viscous fluids. Commun. Math. Sci. 10 (2), 645670.CrossRefGoogle Scholar
Liu, K., Marple, G.R., Allard, J., Li, S., Veerapaneni, S. & Lowengrub, J. 2017 Dynamics of a multicomponent vesicle in shear flow. Soft Matt. 13 (19), 35213531.CrossRefGoogle ScholarPubMed
Lowengrub, J.S., Rätz, A. & Voigt, A. 2009 Phase-field modeling of the dynamics of multicomponent vesicles: spinodal decomposition, coarsening, budding, and fission. Phys. Rev. E 79, 031926.CrossRefGoogle ScholarPubMed
Marenduzzo, D. & Orlandini, E. 2013 Phase separation dynamics on curved surfaces. Soft Matt. 9 (4), 11781187.CrossRefGoogle Scholar
Maxfield, F.R. 2002 Plasma membrane microdomains. Curr. Opin. Cell Biol. 14 (4), 483487.CrossRefGoogle ScholarPubMed
Michalet, X., Bensimon, D. & Fourcade, B. 1994 Fluctuating vesicles of nonspherical topology. Phys. Rev. Lett. 72 (1), 168.CrossRefGoogle ScholarPubMed
Michell, J.H. 1899 On the direct determination of stress in an elastic solid, with application to the theory of plates. Proc. Lond. Math. Soc. 1 (1), 100124.CrossRefGoogle Scholar
Misbah, C. 2006 Vacillating breathing and tumbling of vesicles under shear flow. Phys. Rev. Lett. 96 (2), 028104.CrossRefGoogle ScholarPubMed
Misbah, C. 2012 Vesicles, capsules and red blood cells under flow. J. Phys.: Conf. Ser. 392, 012005.Google Scholar
Morse, D.C. & Milner, S.T. 1994 Fluctuations and phase behavior of fluid membrane vesicles. Europhys. Lett. 26 (8), 565.CrossRefGoogle Scholar
Mushenheim, P.C., Pendery, J.S., Weibel, D.B., Spagnolie, S.E. & Abbott, N.L. 2016 Straining soft colloids in aqueous nematic liquid crystals. Proc. Natl Acad. Sci. USA 113 (20), 55645569.CrossRefGoogle ScholarPubMed
Nave, J.C., Rosales, R.R. & Seibold, B. 2010 A gradient-augmented level set method with an optimally local, coherent advection scheme. J. Comput. Phys. 229 (10), 38023827.CrossRefGoogle Scholar
Noguchi, H. 2009 Swinging and synchronized rotations of red blood cells in simple shear flow. Phys. Rev. E 80, 021902.CrossRefGoogle ScholarPubMed
Noguchi, H. 2010 Dynamics of fluid vesicles in oscillatory shear flow. J. Phys. Soc. Japan 79 (2), 024801.CrossRefGoogle Scholar
Noguchi, H. & Gompper, G. 2007 Swinging and tumbling of fluid vesicles in shear flow. Phys. Rev. Lett. 98 (12), 128103.CrossRefGoogle ScholarPubMed
Olla, P. 2011 Tank-treading as a means of propulsion in viscous shear flows. J. Fluid Mech. 680, 265286.CrossRefGoogle Scholar
Osher, S.J. & Fedkiw, R.P. 2002 Level Set Methods and Dynamic Implicit Surfaces, 1st edn. Springer.Google Scholar
Powers, T.R. 2010 Dynamics of filaments and membranes in a viscous fluid. Rev. Mod. Phys. 82 (2), 1607.CrossRefGoogle Scholar
Quaife, B., Gannon, A. & Young, Y.-N. 2021 Hydrodynamics of a semipermeable vesicle under flow and confinement. Phys. Rev. Fluids 6, 073601.Google Scholar
Raffiee, A.H., Dabiri, S. & Ardekani, A.M. 2019 Suspension of deformable particles in Newtonian and viscoelastic fluids in a microchannel. Microfluid Nanofluid 23 (2), 22.CrossRefGoogle Scholar
Rajendran, L. & Annaert, W. 2012 Membrane trafficking pathways in alzheimer's disease. Traffic 13 (6), 759770.CrossRefGoogle ScholarPubMed
Salac, D. & Miksis, M.J. 2012 Reynolds number effects on lipid vesicles. J. Fluid Mech. 711, 122146.CrossRefGoogle Scholar
Schneider, M.B., Jenkins, J.T. & Webb, W.W. 1984 Thermal fluctuations of large quasi-spherical bimolecular phospholipid vesicles. J. Phys. 45 (9), 14571472.CrossRefGoogle Scholar
Seibold, B., Rosales, R.R. & Nave, J.C. 2012 Jet schemes for advection problems. J. Discrete Continuous Dyn. Syst. 17 (4), 1229–1259.Google Scholar
Seifert, U. 1997 Configurations of fluid membranes and vesicles. Adv. Phys. 46 (1), 13137.CrossRefGoogle Scholar
Seifert, U. 1999 Fluid membranes in hydrodynamic flow fields: formalism and an application to fluctuating quasispherical vesicles in shear flow. Eur. Phys. J. B 8 (3), 405415.CrossRefGoogle Scholar
Seol, Y., Tseng, Y., Kim, Y. & Lai, M. 2019 An immersed boundary method for simulating Newtonian vesicles in viscoelastic fluid. J. Comput. Phys. 376, 10091027.CrossRefGoogle Scholar
Simons, K. & Toomre, D. 2000 Lipid rafts and signal transduction. Nat. Rev. Mol. Cell Biol. 1 (1), 3139.CrossRefGoogle ScholarPubMed
Skotheim, J.M. & Secomb, T.W 2007 Red blood cells and other nonspherical capsules in shear flow: oscillatory dynamics and the tank-treading-to-tumbling transition. Phys. Rev. Lett. 98 (7), 078301.CrossRefGoogle ScholarPubMed
Smith, K.A. & Uspal, W.E 2007 Shear-driven release of a bud from a multicomponent vesicle. J. Chem. Phys. 126 (7), 02B610.CrossRefGoogle ScholarPubMed
Sohn, J.S., Tseng, Y.-H., Li, S., Voigt, A. & Lowengrub, J.S. 2010 Dynamics of multicomponent vesicles in a viscous fluid. J. Comput. Phys. 229 (1), 119144.CrossRefGoogle Scholar
Stanich, C.A., Honerkamp-Smith, A.R., Putzel, G.G., Warth, C.S., Lamprecht, A.K., Mandal, P., Mann, E., Hua, T.D. & Keller, S.L. 2013 Coarsening dynamics of domains in lipid membranes. Biophys. J. 105 (2), 444454.CrossRefGoogle ScholarPubMed
Tian, A., Johnson, C., Wang, W. & Baumgart, T. 2007 Line tension at fluid membrane domain boundaries measured by micropipette aspiration. Phys. Rev. Lett. 98 (20), 208102.CrossRefGoogle ScholarPubMed
Tusch, S., Loiseau, E., Al-Halifa, A., Khelloufi, K., Helfer, E. & Viallat, A. 2018 When giant vesicles mimic red blood cell dynamics: swinging of two-phase vesicles in shear flow. Phys. Rev. Fluids 3 (12), 123605.CrossRefGoogle Scholar
Veatch, S.L. & Keller, S.L. 2003 Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. Biophys. J. 85 (5), 30743083.CrossRefGoogle ScholarPubMed
Veerapaneni, S.K., Rahimian, A., Biros, G. & Zorin, D. 2011 a A fast algorithm for simulating vesicle flows in three dimensions. J. Comput. Phys. 230 (14), 56105634.CrossRefGoogle Scholar
Veerapaneni, S.K., Young, Y.-N., Vlahovska, P.M. & Bławzdziewicz, J. 2011 b Dynamics of a compound vesicle in shear flow. Phys. Rev. Lett 106 (15), 158103.CrossRefGoogle ScholarPubMed
Velmurugan, G., Kolahdouz, E.M. & Salac, D. 2016 Level set jet schemes for stiff advection equations: the SemiJet method. Comput. Meth. Appl. Mech. Engng 310, 233251.CrossRefGoogle Scholar
Vetrivel, K.S. & Thinakaran, G. 2010 Membrane rafts in Alzheimer's disease beta-amyloid production. Biochim. Biophys. Acta: Mol. Cell. Biol. Lipids 1801 (8), 860867.CrossRefGoogle ScholarPubMed
Vlahovska, P.M. & Gracia, R.S. 2007 Dynamics of a viscous vesicle in linear flows. Phys. Rev. E 75 (1), 016313.CrossRefGoogle ScholarPubMed
Vlahovska, P.M., Podgorski, T. & Misbah, C. 2009 Vesicles and red blood cells in flow: from individual dynamics to rheology. C. R. Phys. 10 (8), 775789.CrossRefGoogle Scholar
Vlahovska, P.M., Young, Y.-N., Danker, G. & Misbah, C. 2011 Dynamics of a non-spherical microcapsule with incompressible interface in shear flow. J. Fluid Mech. 678, 221247.CrossRefGoogle Scholar
Vlahovska, P.M. 2015 Dynamics of membrane-bound particles: capsules and vesicles. In Fluid-Structure Interactions in Low-Reynolds-Number Flows (ed. C. Duprat and H.A. Stone), pp. 313–346.Google Scholar
Vlahovska, P.M. & Misbah, C. 2019 Theory of vesicle dynamics in flow and electric fields. In The Giant Vesicle Book (ed. R. Dimova and C. Marques), pp. 195–210. CRC Press.CrossRefGoogle Scholar
Wortis, M., Jarić, M. & Seifert, U. 1997 Thermal shape fluctuations of fluid-phase phospholipid-bilayer membranes and vesicles. J. Mol. Liq. 71 (2–3), 195207.CrossRefGoogle Scholar
Young, Y.-N., Shelley, M.J. & Stein, D.B. 2021 The many behaviors of deformable active droplets. Math. Biosci. Engng 18 (3), 28492881.CrossRefGoogle Scholar
Zabusky, N.J., Segre, E., Deschamps, J., Kantsler, V. & Steinberg, V. 2011 Dynamics of vesicles in shear and rotational flows: modal dynamics and phase diagram. Phys. Fluids 23 (4), 041905.CrossRefGoogle Scholar
Zahalak, G.I., Rao, P.R. & Sutera, S.P. 1987 Large deformations of a cylindrical liquid-filled membrane by a viscous shear flow. J. Fluid Mech. 179, 283305.CrossRefGoogle Scholar
Zhao, H. & Shaqfeh, E.S.G 2011 The dynamics of a vesicle in simple shear flow. J. Fluid Mech. 674, 578604.CrossRefGoogle Scholar
Zhao, H., Shaqfeh, E.S.G. & Narsimhan, V. 2012 Shear-induced particle migration and margination in a cellular suspension. Phys. Fluids 24 (1), 011902.CrossRefGoogle Scholar
Zhao, H., Spann, A.P. & Shaqfeh, E.S.G. 2011 The dynamics of a vesicle in a wall-bound shear flow. Phys. Fluids 23 (12), 121901.CrossRefGoogle Scholar
Zhao, Y. & Du, Q. 2011 Diffuse interface model of multicomponent vesicle adhesion and fusion. Phys. Rev. E 84 (1), 011903.CrossRefGoogle ScholarPubMed

Gera et al. supplementary movie 1

Movie M1: Vesicle dynamics with bending stiffness variation in spatial mode M=2. Beyond a critical magnitude of variation the elongated axis transitions from swinging to tumbling.

Download Gera et al. supplementary movie 1(Video)
Video 1.3 MB

Gera et al. supplementary movie 2

Movie M2: As in Movie M1, but with a smaller enclosed area.

Download Gera et al. supplementary movie 2(Video)
Video 1.7 MB

Gera et al. supplementary movie 3

Movie M3: As in Movies M1-M2, with yet smaller enclosed area.

Download Gera et al. supplementary movie 3(Video)
Video 2.1 MB

Gera et al. supplementary movie 4

Movie M4: Vesicles in a shear flow with different spatial modes of material property variation. The M=2 mode most strongly interacts with the deformation imposed by the background shear flow. The magnitude of the variation is just large enough for the case with two domains (M=2) to tumble.

Download Gera et al. supplementary movie 4(Video)
Video 1.7 MB

Gera et al. supplementary movie 5

Movie M5: As in Movie M3, but with increased variation in the bending stiffnesses. The swinging amplitudes of vesicles with even numbers of domains (M even) are increasing.

Download Gera et al. supplementary movie 5(Video)
Video 1.8 MB

Gera et al. supplementary movie 6

Movie M6: As in Movies M3-M4, with yet greater magnitude of bending stiffness variation, now showing tumbling in the vesicle with four domains (M=4).

Download Gera et al. supplementary movie 6(Video)
Video 1.9 MB
Supplementary material: PDF

Gera et al. supplementary material

Supplementary data with full movie captions

Download Gera et al. supplementary material(PDF)
PDF 113.6 KB