Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T05:58:47.561Z Has data issue: false hasContentIssue false

The structure of energy fluxes in wave turbulence

Published online by Cambridge University Press:  06 January 2023

Giovanni Dematteis*
Affiliation:
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY 12180, USA
Yuri V. Lvov
Affiliation:
Department of Mathematical Sciences, Rensselaer Polytechnic Institute, 110 8th St, Troy, NY 12180, USA
*
Email address for correspondence: dematg@rpi.edu

Abstract

We calculate the net energy per unit time exchanged between two sets of modes in a generic system governed by a three-wave kinetic equation. Our calculation is based on the property of detailed energy conservation of the triadic resonant interactions. In a first application to isotropic systems, we re-derive the previously used formula for the energy flux as a particular case for adjacent sets. We then exploit the new formalism to quantify the level of locality of the energy transfers in the example of surface capillary waves. A second application to anisotropic wave systems expands the currently available set of tools to investigate magnitude and direction of the energy fluxes in these systems. We illustrate the use of the formalism by characterizing the energy pathways in the oceanic internal wavefield. Our proposed approach, unlike traditional approaches, is not limited to stationarity, scale invariance and strict locality. In addition, we define a number $w$ that quantifies the scale separation necessary for two sets of modes to having negligible mutual energy exchange, with potential consequences in the interpretation of wave turbulence experiments. The methodology presented here provides a general, simple and systematic approach to energy fluxes in wave turbulence.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balk, A.M., Zakharov, V.E. & Nazarenko, S.V. 1990 Nonlocal turbulence of drift waves. Sov. Phys. JETP 71 (2), 249260.Google Scholar
Banks, J.W., Buckmaster, T., Korotkevich, A.O., Kovačič, G. & Shatah, J. 2022 Direct verification of the kinetic description of wave turbulence for finite-size systems dominated by interactions among groups of six waves. Phys. Rev. Lett. 129 (3), 034101.Google ScholarPubMed
Buckmaster, T., Germain, P., Hani, Z. & Shatah, J. 2021 Onset of the wave turbulence description of the longtime behavior of the nonlinear Schrödinger equation. Invent. Math. 225 (3), 787855.CrossRefGoogle Scholar
Caillol, P. & Zeitlin, V. 2000 Kinetic equations and stationary energy spectra of weakly nonlinear internal gravity waves. Dyn. Atmos. Oceans 32 (2), 81112.CrossRefGoogle Scholar
Chibbaro, S., Dematteis, G. & Rondoni, L. 2018 4-wave dynamics in kinetic wave turbulence. Physica D 362, 2459.CrossRefGoogle Scholar
Choi, Y., Lvov, Y.V. & Nazarenko, S. 2004 Probability densities and preservation of randomness in wave turbulence. Phys. Lett. A 332 (3–4), 230238.CrossRefGoogle Scholar
David, V. & Galtier, S. 2022 Wave turbulence in inertial electron magnetohydrodynamics. J. Plasma Phys. 88 (5), 905880509.CrossRefGoogle Scholar
Davis, G., Jamin, T., Deleuze, J., Joubaud, S. & Dauxois, T. 2020 Succession of resonances to achieve internal wave turbulence. Phys. Rev. Lett. 124 (20), 204502.CrossRefGoogle ScholarPubMed
Deike, L., Berhanu, M. & Falcon, E. 2014 a Energy flux measurement from the dissipated energy in capillary wave turbulence. Phys. Rev. E 89 (2), 023003.CrossRefGoogle ScholarPubMed
Deike, L., Fuster, D., Berhanu, M. & Falcon, E. 2014 b Direct numerical simulations of capillary wave turbulence. Phys. Rev. Lett. 112 (23), 234501.CrossRefGoogle ScholarPubMed
Dematteis, G. & Lvov, Y.V. 2021 Downscale energy fluxes in scale-invariant oceanic internal wave turbulence. J. Fluid Mech. 915, A129.CrossRefGoogle Scholar
Dematteis, G., Polzin, K. & Lvov, Y.V. 2022 On the origins of the oceanic ultraviolet catastrophe. J. Phys. Oceanogr. 52 (4), 597616.CrossRefGoogle Scholar
Deng, Y. & Hani, Z. 2021 a Full derivation of the wave kinetic equation. arXiv:2104.11204.CrossRefGoogle Scholar
Deng, Y. & Hani, Z. 2021 b Propagation of chaos and the higher order statistics in the wave kinetic theory. arXiv:2110.04565.Google Scholar
Düring, G., Josserand, C. & Rica, S. 2006 Weak turbulence for a vibrating plate: can one hear a Kolmogorov spectrum? Phys. Rev. Lett. 97 (2), 025503.CrossRefGoogle ScholarPubMed
Eyink, G.L. 1994 Energy dissipation without viscosity in ideal hydrodynamics. I. Fourier analysis and local energy transfer. Physica D 78 (3–4), 222240.CrossRefGoogle Scholar
Eyink, G.L. 2005 Locality of turbulent cascades. Physica D 207 (1–2), 91116.CrossRefGoogle Scholar
Eyink, G.L. & Shi, Y.-K. 2012 Kinetic wave turbulence. Physica D 241 (18), 14871511.CrossRefGoogle Scholar
Galtier, S. 2003 Weak inertial-wave turbulence theory. Phys. Rev. E 68 (1), 015301.CrossRefGoogle ScholarPubMed
Galtier, S. 2006 Wave turbulence in incompressible Hall magnetohydrodynamics. J. Plasma Phys. 72 (5), 721769.CrossRefGoogle Scholar
Garabato, A.N. & Meredith, M. 2022 Ocean mixing: oceanography at a watershed. In Ocean Mixing (ed. A.N. Garabato & M. Meredith), pp. 1–4. Elsevier.CrossRefGoogle Scholar
Gregg, M.C. 1989 Scaling turbulent dissipation in the thermocline. J. Geophys. Res. 94 (C7), 96869698.CrossRefGoogle Scholar
Hassaini, R., Mordant, N., Miquel, B., Krstulovic, G. & Düring, G. 2019 Elastic weak turbulence: from the vibrating plate to the drum. Phys. Rev. E 99 (3), 033002.CrossRefGoogle Scholar
Hasselmann, K. 1962 On the non-linear energy transfer in a gravity-wave spectrum. Part I: general theory. J. Fluid Mech. 12, 481500.CrossRefGoogle Scholar
Hasselmann, K. 1966 Feynman diagrams and interaction rules of wave–wave scattering processes. Rev. Geophys. 4 (1), 132.CrossRefGoogle Scholar
Hasselmann, S. & Hasselmann, K. 1981 A symmetrical method of computing the nonlinear transfer in a gravity wave spectrum. Universität Hamburg, Fachbereich Geowissenschaften.Google Scholar
Hasselmann, S. & Hasselmann, K. 1985 Computations and parameterizations of the nonlinear energy transfer in a gravity-wave spectrum. Part I: A new method for efficient computations of the exact nonlinear transfer integral. J. Phys. Oceanogr. 15 (11), 13691377.2.0.CO;2>CrossRefGoogle Scholar
Henyey, F.S. 1991 Scaling of internal wave model predictions for $\epsilon$. In Dynamics of Oceanic Internal Gravity Waves: Proc. ‘Aha Huliko'a Hawaiian Winter Workshop, pp. 233–236.Google Scholar
Holloway, G. 1980 Oceanic internal waves are not weak waves. J. Phys. Oceanogr. 10 (6), 906914.2.0.CO;2>CrossRefGoogle Scholar
Holloway, P.M.G., Henyey, F. & Pomphrey, N. 1986 Nonlinear interactions among internal gravity waves. Rev. Geophys. 24, 493536.Google Scholar
Hrabski, A. & Pan, Y. 2022 On the properties of energy flux in wave turbulence. J. Fluid Mech. 936, A47.CrossRefGoogle Scholar
Janssen, P. 2004 The Interaction of Ocean Waves and Wind. Cambridge University Press.CrossRefGoogle Scholar
Kolmogorov, A.N. 1941 The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Cr Acad. Sci. URSS 30, 301305.Google Scholar
Komen, G.J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S. & Janssen, P.A.E.M. 1996 Dynamics and Modelling of Ocean Waves. Cambridge University Press.Google Scholar
Kraichnan, R.H. 1959 The structure of isotropic turbulence at very high Reynolds numbers. J. Fluid Mech. 5 (4), 497543.CrossRefGoogle Scholar
Kraichnan, R.H. 1975 Remarks on turbulence theory. Adv. Math. 16 (3), 305331.CrossRefGoogle Scholar
Kuznetsov, E.A. 1972 Turbulence of ion sound in a plasma located in a magnetic field. J. Sov. Phys. JETP 35, 310314.Google Scholar
Le Boyer, A. & Alford, M.H. 2021 Variability and sources of the internal wave continuum examined from global moored velocity records. J. Phys. Oceanogr. 51 (9), 28072823.CrossRefGoogle Scholar
Lukkarinen, J. & Spohn, H. 2011 Weakly nonlinear Schrödinger equation with random initial data. Invent. Math. 183 (1), 79188.CrossRefGoogle Scholar
Lvov, Y.V. & Tabak, E. 2001 Hamiltonian formalism and the Garrett–Munk spectrum of internal waves in the ocean. Phys. Rev. Lett. 87 (16), 168501.CrossRefGoogle ScholarPubMed
Lvov, Y.V. & Tabak, E. 2004 A Hamiltonian formulation for long internal waves. Physica D 195, 106122.CrossRefGoogle Scholar
Lvov, Y.V., Tabak, E., Polzin, K.L. & Yokoyama, N. 2010 The oceanic internal wavefield: theory of scale invariant spectra. J. Phys. Oceanogr. 40, 26052623.CrossRefGoogle Scholar
MacKinnon, J.A., et al. 2017 Climate process team on internal wave-driven ocean mixing. Bull. Am. Meteorol. Soc. 98 (11), 24292454.CrossRefGoogle Scholar
McComas, C.H. & Bretherton, F.P. 1977 Resonant interaction of oceanic internal waves. J. Geophys. Res. 83, 13971412.Google Scholar
McComas, C.H. & Müller, P. 1981 The dynamic balance of internal waves. J. Phys. Oceanogr. 11, 970986.2.0.CO;2>CrossRefGoogle Scholar
Monsalve, E., Brunet, M., Gallet, B. & Cortet, P.-P. 2020 Quantitative experimental observation of weak inertial-wave turbulence. Phys. Rev. Lett. 125 (25), 254502.CrossRefGoogle ScholarPubMed
Musgrave, R., Pollmann, F., Kelly, S. & Nikurashin, M. 2022 The lifecycle of topographically- generated internal waves. In Ocean Mixing (ed. A.N. Garabato, & M. Meredith), pp. 117–144. Elsevier.CrossRefGoogle Scholar
Nazarenko, S. 2011 Wave Turbulence. Springer.CrossRefGoogle Scholar
Olbers, D.J. 1976 Nonlinear energy transfer and the energy balance of the internal wave field in the deep ocean. J. Fluid Mech. 74 (2), 375399.CrossRefGoogle Scholar
Onorato, M. & Dematteis, G. 2020 A straightforward derivation of the four-wave kinetic equation in action-angle variables. J. Phys. Commun. 4 (9), 095016.CrossRefGoogle Scholar
Onsager, L. 1949 Statistical hydrodynamics. Il Nuovo Cimento 6 (2), 279287.CrossRefGoogle Scholar
Pan, Y. 2017 Understanding of weak turbulence of capillary waves. PhD thesis, Massachusetts Institute of Technology.Google Scholar
Pan, Y. & Yue, D.K.P. 2014 Direct numerical investigation of turbulence of capillary waves. Phys. Rev. Lett. 113 (9), 094501.CrossRefGoogle ScholarPubMed
Pelinovsky, E.N. & Raevsky, M.A. 1977 Weak turbulence of internal waves in the ocean. Atmos. Ocean Phys. 13, 187193.Google Scholar
Pollmann, F. 2020 Global characterization of the ocean's internal wave spectrum. J. Phys. Oceanogr. 50 (7), 18711891.CrossRefGoogle Scholar
Polzin, K.L. 2009 An abyssal recipe. Ocean Model. 30 (4), 298309.CrossRefGoogle Scholar
Polzin, K.L., Garabato, A.C.N., Huussen, T.N., Sloyan, B.M. & Waterman, S. 2014 Finescale parameterizations of turbulent dissipation. J. Geophys. Res. 119 (2), 13831419.CrossRefGoogle Scholar
Polzin, K.L., Toole, J.M. & Schmitt, R.W. 1995 Finescale parameterizations of turbulent dissipation. J. Phys. Oceanogr. 25 (3), 306328.2.0.CO;2>CrossRefGoogle Scholar
Pushkarev, A.N. & Zakharov, V.E. 2000 Turbulence of capillary waves – theory and numerical simulations. Physica D 135, 98116.CrossRefGoogle Scholar
Resio, D. & Perrie, W. 1991 A numerical study of nonlinear energy fluxes due to wave–wave interactions. Part 1. Methodology and basic results. J. Fluid Mech. 223, 603629.CrossRefGoogle Scholar
Rodda, C., Savaro, C., Davis, G., Reneuve, J., Augier, P., Sommeria, J., Valran, T., Viboud, S. & Mordant, N. 2022 Experimental observations of internal wave turbulence transition in a stratified fluid. Phys. Rev. Fluids 7 (9), 094802.CrossRefGoogle Scholar
Rose, H.A. & Sulem, P.L. 1978 Fully developed turbulence and statistical mechanics. J. Phys. 39 (5), 441484.CrossRefGoogle Scholar
Rosenzweig, M. & Staffilani, G. 2022 Uniqueness of solutions to the spectral hierarchy in kinetic wave turbulence theory. Physica D 433, 133148.CrossRefGoogle Scholar
Sagdeev, R.Z. & Galeev, A.A. 1969 Nonlinear Plasma Theory (ed. T.M. O'Neil & D.L. Brook), p. 89. Benjamin.Google Scholar
Thakur, R., Arbic, B.K., Menemenlis, D., Momeni, K., Pan, Y., Peltier, W.R., Skitka, J., Alford, M.H. & Ma, Y. 2022 Impact of vertical mixing parameterizations on internal gravity wave spectra in regional ocean models. Geophys. Res. Lett. 49 (16), e2022GL099614.CrossRefGoogle Scholar
Thorpe, S.A. 2005 The Turbulent Ocean. Cambridge University Press.CrossRefGoogle Scholar
Whalen, C.B., de Lavergne, C., Garabato, A.C.N., Klymak, J.M., Mackinnon, J.A. & Sheen, K.L. 2020 Internal wave-driven mixing: governing processes and consequences for climate. Nat. Rev. Earth Environ. 1 (11), 606621.CrossRefGoogle Scholar
Zakharov, V.E. 1972 Collapse of Langmuir waves. Sov. Phys. JETP 35 (5), 908914.Google Scholar
Zakharov, V.E. & Filonenko, N.N. 1967 a Weak turbulence of capillary waves. J. Appl. Mech. Tech. Phys. 8 (5), 3740.CrossRefGoogle Scholar
Zakharov, V.E. & Filonenko, N.N. 1967 b Energy spectrum for stochastic oscillations of the surface of a liquid. In Soviet Physics Doklady, vol. 11, p. 881.Google Scholar
Zakharov, V.E., L'vov, V.S. & Falkovich, G. 1992 Kolmogorov Spectra of Turbulence. Springer.CrossRefGoogle Scholar
Zakharov, V.E. & Piterbarg, L.I. 1988 Canonical variables for Rossby waves and plasma drift waves. Phys. Lett. A 126 (8–9), 497500.CrossRefGoogle Scholar
Zakharov, V.E. & Sagdeev, R.Z. 1970 On spectrum of acoustic turbulence. Dokl. Akad. Nauk SSSR 192 (2), 297300.Google Scholar
Ziman, J.M. 2001 Electrons and Phonons: The Theory of Transport Phenomena in Solids. Oxford University Press.CrossRefGoogle Scholar