Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T00:23:25.881Z Has data issue: false hasContentIssue false

Streamwise vortex breakdown due to the interaction with crossed shock waves

Published online by Cambridge University Press:  23 October 2023

Toshihiko Hiejima*
Affiliation:
Department of Aerospace Engineering, Osaka Metropolitan University, 1-1 Gakuen-cho, Nakaku, Sakai, Osaka 599-8531, Japan
*
Email address for correspondence: hiejima@omu.ac.jp

Abstract

This paper presents a vortex breakdown study due to the interaction between a Batchelor vortex and the crossing of oblique shock waves with Mach numbers of 3.5 and 5.0, favourable for supersonic mixing and combustion, respectively. Numerical simulations were conducted to investigate the effects of the circulation intensity and shock angle on vortex breakdown. The results indicate that a breakdown occurs at the shock angle $\beta \geqslant 45^\circ$ or the vortex circulation $q = 0.32$, and the configuration is a bubble structure with a recirculation region; most of the breakdowns possess a stagnation point. Furthermore, the structure differs from that of a normal shock wave and vortex interaction because the bubble region is subsonic and does not comprise a normal shock wave on the inside. Additionally, this vortex breakdown shows that the momentum flux on the centreline decreases once at the tip of the bubble owing to a sudden drop in velocity in the subsonic region. In addition, the enstrophy production resulting from vortex stretching and tilting is found to have a significant advantage in the interaction region. Based on these results, the threshold required for a bubble vortex breakdown was theoretically derived as an inequality. The numerical simulation results support the theoretical criterion obtained from the proposed inequality. Therefore, a streamwise vortex breakdown resulting from the interaction between the vortex and intersecting oblique-shocks should be reasonably predicted.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J.D. 2003 Modern Compressible Flow: With Historical Perspective, 3rd edn. McGraw-Hill Education.Google Scholar
Andreopoulos, Y., Agui, J.H. & Briassulis, G. 2000 Shock wave–turbulence interactions. Annu. Rev. Fluid Mech. 32 (1), 309345.CrossRefGoogle Scholar
Batchelor, G.K. 1964 Axial flow in trailing line vortices. J. Fluid Mech. 20, 645658.CrossRefGoogle Scholar
Ben-Dor, G. 2007 Shock Wave Reflection Phenomena, 2nd edn. Springer.Google Scholar
Ben-Dor, G., Ivanov, M., Vasilev, E.I. & Elperin, T. 2002 Hysteresis processes in the regular reflection $\leftrightarrow$ Mach reflection transition in steady flows. Prog. Aerosp. Sci. 38 (4), 347387.CrossRefGoogle Scholar
Benjamin, T.B. 1962 Theory of the vortex breakdown phenomenon. J. Fluid Mech. 14 (4), 593629.CrossRefGoogle Scholar
Burns, R., Koo, H., Kim, S., Clemens, N. & Raman, V. 2011 Experimental and computational studies of mixing in supersonic flow. AIAA Paper 2011–3936.CrossRefGoogle Scholar
Cattafesta, L.N. & Settles, G.S. 1992 Experiments on shock/vortex interaction. AIAA Paper 92–0315.CrossRefGoogle Scholar
Corpening, G. & Anderson, J.D. 1989 Numerical solutions to three-dimensional shock wave/vortex interaction at hypersonic speeds. AIAA Paper 89–0674.CrossRefGoogle Scholar
Crocco, L. 1937 Eine neue stromfunktion für die erforschung der bewegung der gase mit rotation. Z. Angew. Math. Mech. 17, 17.CrossRefGoogle Scholar
Delery, J.M. 1994 Aspects of vortex breakdown. Prog. Aerosp. Sci. 30, 159.CrossRefGoogle Scholar
Delery, J.M., Horowitz, E., Leuchter, O. & Solignac, J.L. 1984 Fundamental studies on vortex flows. Rech. Aerosp. 2, 124.Google Scholar
Di Pierro, B. & Abid, M. 2011 Energy spectra in a helical vortex breakdown. Phys. Fluids 23, 025104.CrossRefGoogle Scholar
Erlebacher, G., Hussaini, M.Y. & Shu, C.-W. 1997 Interaction of a shock with a longitudinal vortex. J. Fluid Mech. 337, 129153.CrossRefGoogle Scholar
Escudier, M. 1988 Vortex breakdown: observations and explanations. Prog. Aerosp. Sci. 25 (2), 189229.CrossRefGoogle Scholar
Foysi, H. & Sarkar, S. 2010 The compressible mixing layer: an LES study. Theor. Comput. Fluid Dyn. 24 (6), 565588.CrossRefGoogle Scholar
Fu, L., Hu, X.Y. & Adams, N.A. 2016 A family of high-order targeted ENO schemes for compressible-fluid simulations. J. Comput. Phys. 305, 333359.CrossRefGoogle Scholar
Fureby, C., Nordin-Bates, K., Petterson, K., Bresson, A. & Sabelnikov, V. 2015 A computational study of supersonic combustion in strut injector and hypermixer flow fields. Proc. Combust. Inst. 35 (2), 21272135.CrossRefGoogle Scholar
Gerlinger, P., Stoll, P., Kindler, M., Schneider, F. & Aigner, M. 2008 Numerical investigation of mixing and combustion enhancement in supersonic combustors by strut induced streamwise vorticity. Aerosp. Sci. Technol. 12 (2), 159168.CrossRefGoogle Scholar
Hall, M.G. 1972 Vortex breakdown. Annu. Rev. Fluid Mech. 4, 195218.CrossRefGoogle Scholar
Herrada, M.A., Pérez-Saborid, M. & Barrero, A. 2003 Vortex breakdown in compressible flows in pipes. Phys. Fluids 15 (8), 22082218.CrossRefGoogle Scholar
Hiejima, T. 2013 Linear stability analysis on supersonic streamwise vortices. Phys. Fluids 25, 114103.CrossRefGoogle Scholar
Hiejima, T. 2014 Criterion for vortex breakdown on shock wave and streamwise vortex interactions. Phys. Rev. E 89, 053017.CrossRefGoogle ScholarPubMed
Hiejima, T. 2016 a Effects of streamwise vortex breakdown on supersonic combustion. Phys. Rev. E 93, 043115.CrossRefGoogle ScholarPubMed
Hiejima, T. 2016 b Theoretical analysis of streamwise vortex circulation induced by a strut injector. Phys. Rev. Fluids 1, 054501.CrossRefGoogle Scholar
Hiejima, T. 2017 Streamwise vortex breakdown in supersonic flows. Phys. Fluids 29, 054102.CrossRefGoogle Scholar
Hiejima, T. 2018 Onset conditions for vortex breakdown in supersonic flows. J. Fluid Mech. 840, R1.CrossRefGoogle Scholar
Hiejima, T. 2019 Compressibility effects of supersonic Batchelor vortices. Phys. Rev. Fluids 4, 093903.CrossRefGoogle Scholar
Hiejima, T. 2020 Helicity effects on inviscid instability in Batchelor vortices. J. Fluid Mech. 897, A37.CrossRefGoogle Scholar
Hiejima, T. 2022 A high-order weighted compact nonlinear scheme for compressible flows. Comput. Fluids 232, 105199.CrossRefGoogle Scholar
Hiejima, T. & Nishimura, K. 2021 Effects of fuel injection speed on supersonic combustion using separation-resistant struts. AIP Adv. 11 (6), 065123.CrossRefGoogle Scholar
Hiejima, T. & Oda, T. 2020 Shockwave effects on supersonic combustion using hypermixer struts. Phys. Fluids 32 (1), 016104.CrossRefGoogle Scholar
Hornung, H. 1986 Regular and Mach reflection of shock waves. Annu. Rev. Fluid Mech. 18 (1), 3358.CrossRefGoogle Scholar
Huang, W., Du, Z., Yan, L. & Moradi, R. 2018 Flame propagation and stabilization in dual-mode scramjet combustors: a survey. Prog. Aerosp. Sci. 101, 1330.CrossRefGoogle Scholar
Hwang, B.-J. & Min, S. 2022 Research progress on mixing enhancement using streamwise vortices in supersonic flows. Acta Astronaut. 200, 1132.CrossRefGoogle Scholar
Ivanov, M.S., Vandromme, D., Fomin, V.M., Kudryavtsev, A.N., Hadjadj, A. & Khotyanovsky, D.V. 2001 Transition between regular and Mach reflection of shock waves: new numerical and experimental results. Shock Waves 11 (3), 199207.CrossRefGoogle Scholar
Jameson, A., Schmidt, W. & Turkel, E. 1981 Numerical simulation of the Euler equations by finite volume method using Runge–Kutta time stepping schemes. AIAA Paper 81–1259.CrossRefGoogle Scholar
Jeong, J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 285, 6994.CrossRefGoogle Scholar
Jiang, G.-S. & Shu, C.-W. 1996 Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1), 202228.CrossRefGoogle Scholar
Kalkhoran, I.M. & Smart, M.K. 2000 Aspects of shock wave-induced vortex breakdown. Prog. Aerosp. Sci. 36 (1), 6395.CrossRefGoogle Scholar
Kandil, O.A., Kandil, H.A. & Liu, C.H. 1993 Shock/vortex interaction and vortex-breakdown modes. In IUTAM Symposium of Fluid Dynamics of High Angle of Attack (ed. R. Kawamura & Y. Aihara), pp. 192–212. Springer.CrossRefGoogle Scholar
Klaas, M., Schröder, W. & Althaus, W. 2005 Experimental investigation of slender streamwise vortices and oblique shock–vortex interactions. AIAA Paper 2005–4652.CrossRefGoogle Scholar
Lambourne, N.C. & Bryer, D.W. 1961 The bursting of leading-edge vortices – some observations and discussion of the phenomenon. Aero. Res. Counc. R&M, 3282, 1–36.Google Scholar
Larsson, J., Bermejo-Moreno, I. & Lele, S.K. 2013 Reynolds- and Mach-number effects in canonical shock–turbulence interaction. J. Fluid Mech. 717, 293321.CrossRefGoogle Scholar
Lee, S., Lele, S.K. & Moin, P. 1993 Direct numerical simulation of isotropic turbulence interacting with a weak shock wave. J. Fluid Mech. 251, 533562.CrossRefGoogle Scholar
Leibovich, S. 1978 The structure of vortex breakdown. Annu. Rev. Fluid Mech. 10, 221246.CrossRefGoogle Scholar
Leibovich, S. 1984 Vortex stability and breakdown: survey and extension. AIAA J. 22, 11921206.CrossRefGoogle Scholar
Lele, S.K. 1994 Compressibility effects on turbulence. Annu. Rev. Fluid Mech. 26, 211254.CrossRefGoogle Scholar
Livescu, D. & Ryu, J. 2016 Vorticity dynamics after the shock–turbulence interaction. Shock Waves 26 (3), 241251.CrossRefGoogle Scholar
Lucca-Negro, O. & O'Doherty, T. 2001 Vortex breakdown: a review. Prog. Energy Combust. Sci. 27, 431481.CrossRefGoogle Scholar
Ludwieg, H. 1960 Stabilität der strömung in einem zylindrischen ringraum. Z. Flugwiss. 8 (5), 135140.Google Scholar
Luginsland, T. 2015 How the nozzle geometry impacts vortex breakdown in compressible swirling-jet flows. AIAA J. 53 (10), 29362950.CrossRefGoogle Scholar
Mager, A. 1972 Dissipation and breakdown of a wing-tip vortex. J. Fluid Mech. 55 (4), 609628.CrossRefGoogle Scholar
Magri, V. & Kalkhoran, I.M. 2013 Numerical investigation of oblique shock wave/vortex interaction. Comput. Fluids 86, 343356.CrossRefGoogle Scholar
Marble, F.E. 1994 Gasdynamic enhancement of nonpremixed combustion. Int. Symp. Combust. 25 (1), 112, part of Special Issue: Twenty-Fifth Symposium (International) on Combustion.CrossRefGoogle Scholar
Meadows, K.R., Kumar, A. & Hussaini, M.Y. 1991 Computational study on the interaction between a vortex and a shock wave. AIAA J. 29, 174179.CrossRefGoogle Scholar
Metwally, O., Settles, G.S. & Horstman, C.C. 1989 An experimental study of shock wave/vortex interaction. AIAA Paper 89–0082.CrossRefGoogle Scholar
Morkovin, M.V. 1992 Mach number effects on free and wall turbulent structures in light of instability flow interactions. In Studies in Turbulence (ed. S. Sarkar, T.B. Gatski & C.G. Speziale), pp. 269–284. Springer.CrossRefGoogle Scholar
Naughton, J.W., Cattafesta, L.N. & Settles, G.S. 1997 An experimental study of compressible turbulent mixing enhancement in swirling jets. J. Fluid Mech. 330, 271305.CrossRefGoogle Scholar
Nedungadi, A. & Lewis, M.J. 1996 Computational study of the flowfields associated with oblique shock/vortex interactions. AIAA J. 34, 25452553.CrossRefGoogle Scholar
Oberleithner, K., Sieber, M., Nayeri, C.N., Paschereit, C.O., Petz, C., Hege, H.-C., Noack, B.R. & Wygnanski, I. 2011 Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J. Fluid Mech. 679, 383414.CrossRefGoogle Scholar
Ragab, S. & Sreedhar, M. 1995 Numerical simulation of vortices with axial velocity deficits. Phys. Fluids 7, 549558.CrossRefGoogle Scholar
Rizzetta, D.P. 1997 Numerical simulation of vortex-induced oblique shock-wave distortion. AIAA J. 35, 209211.CrossRefGoogle Scholar
Ruith, M.R., Chen, P., Meiburg, E. & Maxworthy, T. 2003 Three-dimensional vortex breakdown in swirling jets and wakes: direct numerical simulation. J. Fluid Mech. 486, 331378.CrossRefGoogle Scholar
Rusak, Z. & Lee, J.H. 2002 The effect of compressibility on the critical swirl of vortex flows in a pipe. J. Fluid Mech. 461, 301319.CrossRefGoogle Scholar
Sandham, N.D. & Reynolds, W.C. 1991 Three-dimensional simulations of large eddies in the compressible mixing layer. J. Fluid Mech. 224, 133158.CrossRefGoogle Scholar
Schlichting, H. 1979 Boundary-Layer Theory, 7th edn. McGraw-Hill.Google Scholar
Settles, G.S. 1991 Supersonic mixing enhancement by vorticity for high-speed propulsion. NASA Tech. Rep. CR-188920.Google Scholar
Settles, G.S. & Cattafesta, L. 1993 Supersonic shock wave/vortex interaction. NASA Tech. Rep. CR-192917.CrossRefGoogle Scholar
Shapiro, A.H. 1953 The Dynamics and Thermodynamics of Compressible Fluid Flow, vol. II. Ronald.Google Scholar
Smart, M.K., Kalkhoran, I.M. & Popovic, S. 1998 Some aspects of streamwise vortex behavior during oblique shock wave/vortex interaction. Shock Waves 8, 243255.CrossRefGoogle Scholar
Soni, R.K. & De, A. 2018 Investigation of mixing characteristics in strut injectors using modal decomposition. Phys. Fluids 30 (1), 016108.CrossRefGoogle Scholar
Su, L., Wen, F., Li, Z., Wan, C., Han, J., Wang, S. & Wang, Z. 2022 Dynamics study of shock wave intersection under high-frequency sine oscillation incoming flow. Phys. Fluids 34 (11), 116107.CrossRefGoogle Scholar
Thomer, O., Schröder, W. & Krause, E. 2001 Normal and oblique shock-vortex interaction. In Proceedings of the International Conference RDAMM, 2001 vol. 6, part 2 (Special Issue), pp. 737–749.Google Scholar
Thompson, J., Kiriakos, R.M., Pournadali Khamseh, A. & DeMauro, E.P. 2022 Measurements of weak and moderate oblique shock-vortex interactions in supersonic flow. Phys. Rev. Fluids 7, 074703.CrossRefGoogle Scholar
Wada, Y. & Liou, M.-S. 1994 A flux splitting scheme with high-resolution and robustness for discontinues. AIAA Paper 94-0083.CrossRefGoogle Scholar
Waitz, I.A., et al. 1997 Enhanced mixing with streamwise vorticity. Prog. Aerosp. Sci. 33, 323351.CrossRefGoogle Scholar
Wang, F.Y. & Sforza, P.M. 1997 Near-field experiments on tip vortices at Mach 3.1. AIAA J. 35 (4), 750753.CrossRefGoogle Scholar
Wei, F., Liu, W.-D., Wang, Q.-C., Zhao, Y.-X. & Yang, R. 2022 a Structural characteristics of the strong interaction between oblique shock wave and streamwise vortex. Phys. Fluids 34 (10), 101702.CrossRefGoogle Scholar
Wei, F., Yang, R., Liu, W.-D., Zhao, Y.-X., Wang, Q.-C. & Sun, M. 2022 b Flow structures of strong interaction between an oblique shock wave and a supersonic streamwise vortex. Phys. Fluids 34 (10), 106102.CrossRefGoogle Scholar
Wu, Z., He, M., Yu, B. & Liu, H. 2022 A circulation prediction model for ramp and vortex generator in supersonic flow: a numerical study. Aerosp. Sci. Technol. 127, 107688.CrossRefGoogle Scholar
Yu, B., He, M., Zhang, B. & Liu, H. 2020 Two-stage growth mode for lift-off mechanism in oblique shock-wave/jet interaction. Phys. Fluids 32 (11), 116105.CrossRefGoogle Scholar
Zatoloka, V.V., Ivanyushkin, A.K. & Nikolayev, A.V. 1978 Interference of vortices with shocks in airscoops. Fluid Mech. Sov. Res. 7, 153158.Google Scholar
Zhang, E., Li, Z., Ji, J., Si, D. & Yang, J. 2021 Converging near-elliptic shock waves. J. Fluid Mech. 909, A2.CrossRefGoogle Scholar
Zhang, S., Zhang, H. & Shu, C.-W. 2009 Topological structure of shock induced vortex breakdown. J. Fluid Mech. 639, 343372.CrossRefGoogle Scholar
Zhang, S., Zhang, Y.-T. & Shu, C.-W. 2005 Multistage interaction of a shock wave and a strong vortex. Phys. Fluids 17 (11), 116101.CrossRefGoogle Scholar
Zheltovodov, A.A., Pimonov, E.A. & Knight, D.D. 2007 Numerical modeling of vortex/shock wave interaction and its transformation by localized energy deposition. Shock waves 17, 273290.CrossRefGoogle Scholar
Zheng, Q., Yang, Y., Wang, J. & Chen, S. 2022 Enstrophy production and flow topology in compressible isotropic turbulence with vibrational non-equilibrium. J. Fluid Mech. 950, A21.CrossRefGoogle Scholar