Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T00:02:01.808Z Has data issue: false hasContentIssue false

Steady water waves with vorticity: spatial Hamiltonian structure

Published online by Cambridge University Press:  19 September 2013

Vladimir Kozlov
Affiliation:
Department of Mathematics, Linköping University, S–581 83 Linköping, Sweden
Nikolay Kuznetsov*
Affiliation:
Laboratory for Mathematical Modelling of Wave Phenomena, Institute for Problems in Mechanical Engineering, Russian Academy of Sciences, V.O., Bol’shoy pr. 61, St Petersburg 199178, Russian Federation
*
Email address for correspondence: nikolay.g.kuznetsov@gmail.com

Abstract

Spatial dynamical systems are obtained for two-dimensional steady gravity waves with vorticity on water of finite depth. These systems have Hamiltonian structure and Hamiltonian is essentially the flow–force invariant.

Type
Rapids
Copyright
©2013 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baesens, C. & MacKay, R. S. 1992 Uniformly travelling water waves from a dynamical systems viewpoint: some insights into bifurcations from Stokes’ family. J. Fluid Mech. 241, 333347.CrossRefGoogle Scholar
Benjamin, T. B. 1971 A unified theory of conjugate flows. Phil. Trans. R. Soc. Lond. A 269, 587643.Google Scholar
Benjamin, T. B. 1984 Impulse, flow force and variational principles. IMA J. Appl. Maths 32, 368.CrossRefGoogle Scholar
Benjamin, T. B. 1995 Verification of the Benjamin–Lighthill conjecture about steady water waves. J. Fluid Mech. 295, 337356.CrossRefGoogle Scholar
Benjamin, T. B. & Lighthill, M. J. 1954 On cnoidal waves and bores. Proc. R. Soc. Lond. A 224, 448460.Google Scholar
Bridges, T. J. 1994 Hamiltonian spatial structure for three-dimensional water waves in a moving frame of reference. J. Nonlinear Sci. 4, 221251.CrossRefGoogle Scholar
Constantin, A., Sattinger, D. & Strauss, W. 2006 Variational formulations for steady water waves with vorticity. J. Fluid Mech. 548, 151163.Google Scholar
Constantin, A. & Strauss, W. 2004 Exact steady periodic water waves with vorticity. Commun. Pure Appl. Maths 57, 481527.CrossRefGoogle Scholar
Constantin, A. & Strauss, W. 2007 Stability properties of steady water waves with vorticity. Commun. Pure Appl. Maths 60, 911950.CrossRefGoogle Scholar
Constantin, A. & Varvaruca, E. 2011 Steady periodic water waves with constant vorticity: regularity and local bifurcation. Arch. Rat. Mech. Anal. 199, 3367.CrossRefGoogle Scholar
Craig, W. & Groves, M. D. 1994 Hamiltonian long-wave approximations to the water-wave problem. Wave Motion 19, 367389.CrossRefGoogle Scholar
Doole, S. H. 1997 The bifurcation of long waves in the parameter space of pressure head and flowforce. Q. J. Mech. Appl. Maths 50, 1734.Google Scholar
Doole, S. H. 1998 The pressure head and flowforce parameter space for waves with constant vorticity. Q. J. Mech. Appl. Maths 51, 6171.CrossRefGoogle Scholar
Ehrnström, M., Escher, J. & Villari, G. 2012 Steady water waves with multiple critical layers: interior dynamics. J. Math. Fluid Mech. 14, 407419.Google Scholar
Ehrnström, M., Escher, J. & Wahlén, E. 2011 Steady water waves with multiple critical layers. SIAM J. Math. Anal. 43, 14361456.CrossRefGoogle Scholar
Groves, M. D. & Toland, J. F. 1997 On variational formulations for steady water waves. Arch. Rat. Mech. Math. Anal. 137, 203226.CrossRefGoogle Scholar
Groves, M. D. & Wahlén, E. 2007 Spatial dynamics methods for solitary gravity–capillary water waves. SIAM J. Math. Anal. 39, 932964.Google Scholar
Groves, M. D. & Wahlén, E. 2008 Small-amplitude Stokes and solitary gravity water waves with an arbitrary distribution of vorticity. Physica D 237, 15301538.CrossRefGoogle Scholar
Hur, V. M. & Lin, Z. 2008 Unstable surface waves in running water. Commun. Math. Phys. 282, 733796 2013 Erratum. Ibid. 318, 857–861.Google Scholar
Keady, G. & Norbury, J. 1978 Waves and conjugate streams with vorticity. Mathematika 25, 129150.Google Scholar
Kozlov, V. & Kuznetsov, N. 2010 The Benjamin–Lighthill conjecture for near-critical values of Bernoulli’s constant. Arch. Rat. Mech. Math. Anal. 197, 433488.CrossRefGoogle Scholar
Kozlov, V. & Kuznetsov, N. 2011a The Benjamin–Lighthill conjecture for steady water waves (revisited). Arch. Rat. Mech. Anal. 201, 631645.CrossRefGoogle Scholar
Kozlov, V. & Kuznetsov, N. 2011b Steady free-surface vortical flows parallel to the horizontal bottom. Q. J. Mech. Appl. Maths 64, 371399.CrossRefGoogle Scholar
Kozlov, V. & Kuznetsov, N. 2012 Bounds for steady water waves with vorticity. J. Differ. Equ. 252, 663691.CrossRefGoogle Scholar
Kozlov, V. & Kuznetsov, N. 2013 Dispersion equation for water waves with vorticity and Stokes waves on flows with counter-currents. Arch. Rat. Mech. Math. Anal., (submitted). Preprint available online at http://arXiv.org/abs/1207.5181.Google Scholar
Lavrentiev, M. & Shabat, B. 1980 Effets Hydrodynamiques et Modèles Mathématiques. Mir.Google Scholar
Strauss, W. 2010 Steady water waves. Bull. Am. Math. Soc. 47, 671694.CrossRefGoogle Scholar
Swan, C., Cummins, I. & James, R. 2001 An experimental study of two-dimensional surface water waves propagating in depth-varying currents. J. Fluid Mech. 428, 273304.CrossRefGoogle Scholar
Thomas, G. P. 1990 Wave-current interactions: an experimental and numerical study. J. Fluid Mech. 216, 505536.CrossRefGoogle Scholar
Wahlén, E. 2007 Steady water waves with constant vorticity. Lett. Math. Phys. 79, 303315.Google Scholar
Wahlén, E. 2008 Hamiltonian long-wave approximations of water waves with constant vorticity. Phys. Lett. A 372, 25972602.Google Scholar
Wahlén, E. 2009 Steady water waves with a critical layer. J. Differ. Equ. 246, 24682483.CrossRefGoogle Scholar
Zakharov, V. E. 1968 Stability of periodic waves of finite amplitude on the surface of a deep fluid. Zh. Prikl. Mekh. Tekh. Fiz. 9, 8694 (translation in J. Appl. Mech. Tech. Phys. 9, 190–194).Google Scholar