Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-26T21:24:13.621Z Has data issue: false hasContentIssue false

Statistical state dynamics analysis of buoyancy layer formation via the Phillips mechanism in two-dimensional stratified turbulence

Published online by Cambridge University Press:  11 February 2019

Joseph G. Fitzgerald*
Affiliation:
Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
Brian F. Farrell
Affiliation:
Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA
*
Email address for correspondence: jfitzgerald@fas.harvard.edu

Abstract

Horizontal density layers are commonly observed in stratified turbulence. Recent work (e.g. Taylor & Zhou, J. Fluid Mech., vol. 823, 2017, R5) has reinvigorated interest in the Phillips instability (PI), by which density layers form via negative diffusion if the turbulent buoyancy flux weakens as stratification increases. Theoretical understanding of PI is incomplete, in part because it remains unclear whether and by what mechanism the flux-gradient relationship for a given example of turbulence has the required negative-diffusion property. Furthermore, the difficulty of analysing the flux-gradient relation in evolving turbulence obscures the operating mechanism when layering is observed. These considerations motivate the search for an example of PI that can be analysed clearly. Here PI is shown to occur in two-dimensional Boussinesq sheared stratified turbulence maintained by stochastic excitation. PI is analysed using the second-order S3T closure of statistical state dynamics, in which the dynamics is written directly for statistical variables of the turbulence. The predictions of S3T are verified using nonlinear simulations. This analysis provides theoretical underpinning of PI based on the fundamental equations of motion that complements previous analyses based on phenomenological models of turbulence.

Type
JFM Rapids
Copyright
© 2019 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balmforth, N. J., Llewellyn Smith, S. G. & Young, W. R. 1998 Dynamics of interfaces and layers in a stratified turbulent fluid. J. Fluid Mech. 355, 329358.Google Scholar
Balmforth, N. J. & Young, Y. N. 2005 Stratified Kolmogorov flow. Part 2. J. Fluid Mech. 528, 2342.Google Scholar
Barenblatt, G. I., Bertsch, M., Dal Passo, R., Prostokishin, V. M. & Ughi, M. 1993 A mathematical model of turbulent heat and mass transfer in stably stratified shear flow. J. Fluid Mech. 253, 341358.Google Scholar
Cho, J. Y. N., Newell, R. E., Anderson, B. E., Barrick, J. D. W. & Lee Thornhill, K. 2003 Characterizations of tropospheric turbulence and stability layers from aircraft observations. J. Geophys. Res. 108, (D20 8784).10.1029/2002JD002820Google Scholar
Constantinou, N. C., Farrell, B. F. & Ioannou, P. J. 2014 Emergence and equilibration of jets in beta-plane turbulence: applications of stochastic structural stability theory. J. Atmos. Sci. 71 (5), 18181842.Google Scholar
Constantinou, N. C. & Parker, J. B. 2018 Magnetic suppression of zonal flows on a beta plane. Astrophys. J. 863 (1), 46.Google Scholar
Duda, T. F. & Rehmann, C. R. 2002 Systematic microstructure variability in double-diffusively stable coastal waters of nonuniform density gradient. J. Geophys. Res. 107 (C10), 3145.Google Scholar
Farrell, B. F. & Ioannou, P. J. 1993 Transient development of perturbations in stratified shear flow. J. Atmos. Sci. 50 (14), 22012214.Google Scholar
Farrell, B. F. & Ioannou, P. J. 2003 Structural stability of turbulent jets. J. Atmos. Sci. 60 (17), 21012118.Google Scholar
Farrell, B. F. & Ioannou, P. J. 2007 Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci. 64 (10), 36523665.Google Scholar
Farrell, B. F. & Ioannou, P. J. 2012 Dynamics of streamwise rolls and streaks in turbulent wall-bounded shear flow. J. Fluid Mech. 708, 149196.Google Scholar
Farrell, B. F. & Ioannou, P. J. 2017 Statistical state dynamics: a new perspective on turbulence in shear flow. In Zonal Jets: Phenomenology, Genesis, Physics (ed. Galperin, B. & Read, P. L.), Cambridge University Press.Google Scholar
Fitzgerald, J. G. & Farrell, B. F. 2018a Statistical state dynamics of vertically sheared horizontal flows in two-dimensional stratified turbulence. J. Fluid Mech. 854, 544590.Google Scholar
Fitzgerald, J. G. & Farrell, B. F. 2018b Vertically sheared horizontal flow-forming instability in stratified turbulence: linear stability analysis using the analytical approach to statistical state dynamics. J. Atmos. Sci. 75 (12), 42014227.Google Scholar
Gregg, M. C. 1980 Microstructure patches in the thermocline. J. Phys. Oceanogr. 10 (6), 915943.10.1175/1520-0485(1980)010<0915:MPITT>2.0.CO;22.0.CO;2>Google Scholar
Herring, J. R. 1963 Investigation of problems in thermal convection. J. Atmos. Sci. 20, 325338.10.1175/1520-0469(1963)020<0325:IOPITC>2.0.CO;22.0.CO;2>Google Scholar
Holford, J. M. & Linden, P. F. 1999 Turbulent mixing in a stratified fluid. Dyn. Atmos. Oceans 30, 173198.Google Scholar
Lucas, D., Caulfield, C. P. & Kerswell, R. R. 2017 Layer formation in horizontally forced stratified turbulence: connecting exact coherent structures to linear instabilities. J. Fluid Mech. 832, 409437.Google Scholar
Manabe, S. & Wetherald, R. 1967 Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J. Atmos. Sci. 24 (3), 241259.10.1175/1520-0469(1967)024<0241:TEOTAW>2.0.CO;22.0.CO;2>Google Scholar
Manucharyan, G. E. & Caulfield, C. P. 2015 Entrainment and mixed layer dynamics of a surface-stress-driven stratified fluid. J. Fluid Mech. 765, 653667.Google Scholar
Ménesguen, C., Hua, B. L., Fruman, M. D. & Schopp, R. 2009 Intermittent layering in the Atlantic equatorial deep jets. J. Mar. Res. 67 (3), 347360.10.1357/002224009789954748Google Scholar
Munk, W. H. 1966 Abyssal recipes. Deep-Sea Res. 13, 707730.Google Scholar
Park, Y. G., Whitehead, J. A. & Gnandadesikan, A. 1994 Turbulent mixing in stratified fluids: layer formation and energetics. J. Fluid Mech. 279, 279311.10.1017/S0022112094003915Google Scholar
Phillips, O. M. 1972 Turbulence in a strongly stratified fluid—is it unstable? Deep-Sea Res. 19 (1), 7981.Google Scholar
Posmentier, E. S. 1977 The generation of salinity finestructure by vertical diffusion. J. Phys. Oceanogr. 7 (2), 298300.Google Scholar
Radko, T. 2003 A mechanism for layer formation in a double-diffusive fluid. J. Fluid Mech. 497, 365380.Google Scholar
Ruddick, B. R., McDougall, T. J. & Turner, J. S. 1989 The formation of layers in a uniformly stirred density gradient. Deep-Sea Res. A 36 (4), 597609.Google Scholar
Salehipour, H., Peltier, W. R., Whalen, C. B. & MacKinnon, J. A. 2016 A new characterization of the turbulent diapycnal diffusivities of mass and momentum in the ocean. Geophys. Res. Lett. 43 (7), 33703379.Google Scholar
Srinivasan, K. & Young, W. R. 2012 Zonostrophic instability. J. Atmos. Sci. 69 (5), 16331656.Google Scholar
Srinivasan, K. & Young, W. R. 2014 Reynolds stress and eddy diffusivity of beta-plane shear flows. J. Atmos. Sci. 71 (6), 21692185.10.1175/JAS-D-13-0246.1Google Scholar
Taylor, J. R.2008 Numerical simulations of the stratified oceanic bottom boundary layer. PhD thesis, University of California, San Diego.Google Scholar
Taylor, J. R. & Zhou, Q. 2017 A multi-parameter criterion for layer formation in a stratified shear flow using sorted buoyancy coordinates. J. Fluid Mech. 823 (R5).Google Scholar
Thorpe, S. A. 2016 Layers and internal waves in uniformly stratified fluids stirred by vertical grids. J. Fluid Mech. 793, 380413.Google Scholar
Venaille, A., Gostiaux, L. & Sommeria, J. 2017 A statistical mechanics approach to mixing in stratified fluids. J. Fluid Mech. 810, 554583.10.1017/jfm.2016.721Google Scholar
Wunsch, S. & Kerstein, A. 2001 A model for layer formation in stably stratified turbulence. Phys. Fluids 13 (3), 702712.Google Scholar
Zhou, Q., Taylor, J. R., Caulfield, C. P. & Linden, P. F. 2017 Diapycnal mixing in layered stratified plane Couette flow quantified in a tracer-based coordinate. J. Fluid Mech. 823, 198229.Google Scholar