Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T14:13:22.996Z Has data issue: false hasContentIssue false

Stabilization of a hypersonic boundary layer using a felt-metal porous coating

Published online by Cambridge University Press:  25 March 2015

R. C. Tritarelli*
Affiliation:
Institute of Fluid Dynamics, ETH Zürich, 8092 Zurich, Switzerland Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305, USA
S. K. Lele
Affiliation:
Department of Aeronautics and Astronautics, Stanford University, Stanford, CA 94305, USA
A. Fedorov
Affiliation:
Moscow Institute of Physics and Technology, Zhukovski, 140180, Russia
*
Email address for correspondence: tritarelli@ifd.mavt.ethz.ch

Abstract

An error in the complex representation of the porous-coating model used in the study by Fedorov et al. (J. Fluid Mech., vol. 479, 2003, pp. 99–124), investigating the stabilization effect of ultrasonically absorptive coatings on hypersonic boundary layers, is pointed out and corrected. This error has been acknowledged by Fedorov et al. (J. Fluid Mech., vol. 769, 2015, pp. 725–728). The corrected version of the erroneous linear stability results of the original work is presented and previously made conclusions are reassessed. The novel numerical results indicate that second-mode instabilities are shifted to lower frequencies on felt-metal porous coatings, similar to the behaviour observed on porous coatings with regular microstructure.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allard, J. F. & Atalla, N. 2009 Propagation of Sound in Porous Media: Modelling Sound Absorbing Materials, 2nd edn. John Wiley & Sons.CrossRefGoogle Scholar
Allard, J.-F. & Champoux, Y. 1992 New empirical equations for sound propagation in rigid frame fibrous materials. J. Acoust. Soc. Am. 91 (6), 33463353.CrossRefGoogle Scholar
Champoux, Y. & Allard, J.-F. 1991 Dynamic tortuosity and bulk modulus in air-saturated porous media. J. Appl. Phys. 70 (4), 19751979.CrossRefGoogle Scholar
De Tullio, N. & Sandham, N. D. 2010 Direct numerical simulation of breakdown to turbulence in a Mach 6 boundary layer over a porous surface. Phys. Fluids 22 (9), 094105.CrossRefGoogle Scholar
Fedorov, A. 2011 Transition and stability of high-speed boundary layers. Annu. Rev. Fluid Mech. 43, 7995.CrossRefGoogle Scholar
Fedorov, A., Shiplyuk, A., Maslov, A., Burov, E. & Malmuth, N. 2003 Stabilization of a hypersonic boundary layer using an ultrasonically absorptive coating. J. Fluid Mech. 479, 99124.CrossRefGoogle Scholar
Fedorov, A., Shiplyuk, A., Maslov, A., Burov, E. & Malmuth, N. 2015 Stabilization of a hypersonic boundary layer using an ultrasonically absorptive coating – CORRIGENDUM. J. Fluid Mech. 769, 725728.CrossRefGoogle Scholar
Fedorov, A. V., Malmuth, N. D., Rasheed, A. & Hornung, H. G. 2001 Stabilization of hypersonic boundary layers by porous coatings. AIAA J. 39 (4), 605610.CrossRefGoogle Scholar
Johnson, D. L., Koplik, J. & Dashen, R. 1987 Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech. 176, 379402.CrossRefGoogle Scholar
Landau, L. D., Lifshitz, E. M. & Pitaevskii, L. P. 1984 Electrodynamics of Continuous Media, 2nd edn. Pergamon.Google Scholar
Rasheed, A., Hornung, H. G., Fedorov, A. V. & Malmuth, N. D. 2002 Experiments on passive hypervelocity boundary-layer control using an ultrasonically absorptive surface. AIAA J. 40 (3), 481489.CrossRefGoogle Scholar
Wang, X. & Zhong, X. 2012 The stabilization of a hypersonic boundary layer using local sections of porous coating. Phys. Fluids 24 (3), 034105.CrossRefGoogle Scholar