Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T21:31:59.556Z Has data issue: false hasContentIssue false

Stability of micropolar fluid flow between concentric rotating cylinders

Published online by Cambridge University Press:  17 July 2009

HUEI CHU WENG
Affiliation:
Department of Mechanical Engineering, Chung Yuan Christian University, Chungli 32023, Taiwan, ROC
CHA'O-KUANG CHEN*
Affiliation:
Department of Mechanical Engineering, National Cheng Kung University, Tainan 70101, Taiwan, ROC
MIN-HSING CHANG
Affiliation:
Department of Mechanical Engineering, Tatung University, Taipei 10452, Taiwan, ROC
*
Email address for correspondence: ckchen@mail.ncku.edu.tw

Abstract

In this study, the theory of micropolar fluids is employed to study the stability problem of flow between two concentric rotating cylinders. The field equations subject to no-slip conditions (non-zero velocity and microrotation velocity components) at the wall surfaces are solved. The analytical solutions of the velocity and microrotation velocity fields as well as the shear stress difference, couple stress and strain rate for basic flow are obtained. The equations with respect to non-axisymmetric disturbances are derived and solved by a direct numerical procedure. It is found that non-zero wall-surface microrotation velocity makes the flow faster and more unstable. Moreover, it tends to reduce the limits of critical non-axisymmetric disturbances. The effect on the stability characteristics can be magnified by increasing the microstructure or couple-stress parameter or the microinertia parameter for the cases of corotating cylinders and a stationary outer cylinder or by decreasing the radius ratio or the microinertia parameter for the case of counterrotating cylinders.

Type
Papers
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, S. & Kline, K. 1971 Lubrication theory for micropolar fluids. J. Appl. Mech. 38, 64650.CrossRefGoogle Scholar
Ambacher, O., Odenbach, S. & Stierstadt, K. 1992 Rotational viscosity in ferrofluids. Z. Phys. B: Condens. Mattet 86, 2932.CrossRefGoogle Scholar
Andereck, C. D., Lin, S. S. & Swinney, H. L. 1986 Flow regimes in a circular Couette system with independently rotating cylinders. J. Fluid Mech. 164, 15183.CrossRefGoogle Scholar
Ariman, T., Cakmak, A. S. & Hill, L. R. 1967 Flow of micropolar fluids between two concentric cylinders. Phys. Fluids 10, 25452550.CrossRefGoogle Scholar
Ariman, T., Turk, M. A. & Sylvester, N. D. 1973 Microcontinuum fluid mechanics – a review. Intl J. Engng Sci. 11, 905930.CrossRefGoogle Scholar
Ariman, T., Turk, M. A. & Sylvester, N. D. 1974 Applications of microcontinuum fluid mechanics. Intl J. Engng Sci. 12, 273293.CrossRefGoogle Scholar
Brenner, H. 1970 Rheology of two-phase system. Annu. Rev. Fluid Mech. 2, 137176.CrossRefGoogle Scholar
Brutyan, M. A. & Krapivsky, P. L. 1992 On the stability of periodic unidirectional flows of micropolar fluid. Intl J. Engng Sci. 30, 40407.CrossRefGoogle Scholar
Chang, M. H., Chen, C. K. & Weng, H. C. 2003 Stability of ferrofluid flow between concentric rotating cylinders with an axial magnetic field. Intl J. Engng Sci. 4 1, 103121.CrossRefGoogle Scholar
Chen, C. K. & Chang, M. H. 1998 Stability of hydromagnetic dissipative Couette flow with non-axisymmetric disturbance. J. Fluid Mech. 366, 135158.CrossRefGoogle Scholar
Das, S., Guha, S. K. & Chattopadhyay, A. K. 2005 Linear stability analysis of hydrodynamic journal bearings under micropolar lubrication. Tribol. Intl 38, 500507.CrossRefGoogle Scholar
Einstein, A. 1906 Eine neue Bestimmung der Molekuldimensionen. Ann. Phys. 19, 289306.CrossRefGoogle Scholar
Embs, J. P., Müller, H. W., Wagner, C., Knorr, K. & Lücke, M. 2000 Measuring the rotational viscosity of ferrofluids without shear flow. Phys. Rev. E 61, R2196R2199.CrossRefGoogle Scholar
Eringen, A. C. 1964 Simple microfluids. Intl J. Engng Sci. 2, 205217.CrossRefGoogle Scholar
Eringen, A. C. 1966 Theory of micropolar fluids. J. Math. Mech. 16, 116.Google Scholar
Eringen, A. C. 1993 Assessment of director and micropolar theories of liquid crystals. Intl J. Engng Sci. 31, 605616.CrossRefGoogle Scholar
Eringen, A. C. 2001 Microcontinuum field theories. II: Fluent media. Springer.Google Scholar
Hadimoto, B. & Tokioka, T. 1969 Two-dimensional shear flows of linear micropolar fluids. Intl J. Engng Sci. 7, 515522.Google Scholar
Holderied, M., Schwab, L. & Stierstadt, K. 1988 Rotational viscosity of ferrofluids and the Taylor instability in a magnetic field. Z. Phys. B: Condens. Matter 70, 431433.CrossRefGoogle Scholar
Kang, C. K. & Eringen, A. C. 1976 The effect of microstructure on the rheological properties of blood. Bull. Math. Biol. 38, 135159.CrossRefGoogle ScholarPubMed
Khonsari, M. M. 1990 On the self-excited whirl orbits of a journal in a Sleeve bearing lubricated with micropolar fluids. Acta Mech. 81, 235244.CrossRefGoogle Scholar
Khonsari, M. M. & Brewe, D. E. 1989 On the performance of finite journal bearings lubricated with micropolar fluids. STLE Tribol. Trans. 32, 15160.CrossRefGoogle Scholar
Krueger, E. R., Gross, A. & Diprima, R. C. 1966 On the relative importance of Taylor-vortex and non-axisymmetric modes in flow between rotating cylinders, J. Fluid Mech. 24, 521538.CrossRefGoogle Scholar
Kuemmerer, H. 1978 Stability of laminar flows of micropolar fluids between parallel walls. Phys. Fluids 21, 16881693.CrossRefGoogle Scholar
Liu, C. Y. 1970 On turbulent flow of micropolar fluids. Intl J. Engng Sci. 8, 45466.CrossRefGoogle Scholar
Liu, C. Y. 1971 Initiation of instability in micropolar fluids. Phys. Fluids 14, 18081809.CrossRefGoogle Scholar
Łukaszewicz, G. 1999 Micropolar fluids. In Theory and Applications, Modelling and Simulation in Science, Engineering and Technology. Birkhäuser.Google Scholar
Odenbach, S. & Gilly, H. 1996 Taylor vortex flow of magnetic fluids under the influence of an azimuthal magnetic field. J. Magn. Magn. Mater. 152, 123128.CrossRefGoogle Scholar
Papautsky, I., Brazzle, J., Ammel, T. & Frazier, A. B. 1999 Laminar fluid behaviour in microchannels using micropolar fluid theory. Sens. Actuators 73, 101108.CrossRefGoogle Scholar
Patel, R., Upadhyay, R. V. & Mehta, R. V. 2003 Viscosity measurements of a ferrofluid: Comparison with various hydrodynamic equations. J. Colloid Interface Sci. 263, 661664.CrossRefGoogle ScholarPubMed
Popel, A. S., Regirer, S. A. & Usick, P. I. 1974 A continuum model of blood flow. Biorhelogy 11, 427437.CrossRefGoogle ScholarPubMed
Rosenthal, A. D., Rinaldi, C., Franklin, T. & Zahn, M. 2004 Torque measurements in spin up flow of ferrofluids. ASME Trans. J. Fluids Engng 126, 19205.CrossRefGoogle Scholar
Sastry, V. U. K. & Das, T. 1985 Stability of Couette flow and Dean flow in micropolar fluids. Intl J. Engng Sci. 23, 11631177.CrossRefGoogle Scholar
Shliomis, M. I. 1972 Effective viscosity of magnetic suspensions. Sov. Phys. JETP 34 1291294.Google Scholar
Stokes, V. K. 1984 Theories of fluids with microstructure, (Ch. 6), Springer-Verlag.CrossRefGoogle Scholar
Taylor, G. I. 1923 Stability of a viscous liquid contained between two rotating cylinders. Phil. Trans. R. Soc. (Lond.) Ser. A 223, 289343.Google Scholar
Verma, P. D. S. & Sehgal, M. M. 1968 Couette flow of micropolar fluids. Intl J. Engng Sci. 6, 23238.CrossRefGoogle Scholar
Wang, X. L. & Zhu, K. Q. 2004 A study of the lubricating effectiveness of micropolar fluids in a dynamically loaded journal bearing (T1516). Tribol. Intl 37, 481490.CrossRefGoogle Scholar
Wang, X. L. & Zhu, K. Q. 2006 Numerical analysis of journal bearings lubricated with micropolar fluids including thermal and cavitating effects. Tribol. Intl 39, 227237.CrossRefGoogle Scholar