Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T03:40:53.385Z Has data issue: false hasContentIssue false

The stability of developing pipe flow at high Reynolds number and the existence of nonlinear neutral centre modes

Published online by Cambridge University Press:  06 September 2011

Andrew G. Walton*
Affiliation:
Department of Mathematics, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
*
Email address for correspondence: a.walton@ic.ac.uk

Abstract

The high-Reynolds-number stability of unsteady pipe flow to axisymmetric disturbances is studied using asymptotic analysis. It is shown that as the disturbance amplitude is increased, nonlinear effects first become significant within the critical layer, which moves away from the pipe wall as a result. It is found that the flow stabilizes once the basic profile has become sufficiently fully developed. By tracing the nonlinear neutral curve back to earlier times, it is found that in addition to the wall mode, which arises from a classical upper branch linear stability analysis, there also exists a nonlinear neutral centre mode, governed primarily by inviscid dynamics. The centre mode problem is solved numerically and the results show the existence of a concentrated region of vorticity centred on or close to the pipe axis and propagating downstream at almost the maximum fluid velocity. The connection between this structure and the puffs and slugs of vorticity observed in experiments is discussed.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bandyopadhyay, P. R. 1986 Aspects of the equilibrium puff in transitional pipe flow. J. Fluid Mech. 163, 439458.CrossRefGoogle Scholar
2. Bandyopadhyay, P. R. & Walton, A. G. 1990 Perturbation amplification in the entry region of a transitional pipe flow. In Instability and Transition, vol. 1 (ed. Hussaini, M. Y. & Voigt, R. G. ), pp. 355371. Springer.Google Scholar
3. Batchelor, G. K. 1956 On steady laminar flow with closed streamlines at large Reynolds number. J. Fluid Mech. 1, 177190.CrossRefGoogle Scholar
4. Batchelor, G. K. 1967 An Introduction to Fluid Dynamics. Cambridge University Press.Google Scholar
5. Benney, D. J. & Bergeron, R. F. 1969 A new class of nonlinear waves in parallel flows. Stud. Appl. Math. 48, 181204.CrossRefGoogle Scholar
6. Darbyshire, A. G. & Mullin, T. 1995 Transition to turbulence in constant-mass-flux pipe flow. J. Fluid Mech. 289, 83114.CrossRefGoogle Scholar
7. van Doorne, C. W. H. & Westerweel, J. 2009 The flow structure of a puff. Phil. Trans. R. Soc. Lond. A 367, 489507.Google ScholarPubMed
8. Duguet, Y., Willis, A. P. & Kerswell, R. R. 2010 Slug genesis in cylindrical pipe flow. J. Fluid Mech. 663, 180208.CrossRefGoogle Scholar
9. Faisst, H. & Eckhardt, B. 2003 Traveling waves in pipe flow. Phys. Rev. Lett. 91, 224502.CrossRefGoogle ScholarPubMed
10. Fowler, A. C. & Howell, P. D. 2003 Intermittency in the transition to turbulence. SIAM J. Appl. Math. 63, 11841207.CrossRefGoogle Scholar
11. Fox, J. A., Lessen, M. & Bhat, W. V. 1968 Experimental investigation of the stability of Hagen–Poiseuille flow. Phys. Fluids 11, 14.CrossRefGoogle Scholar
12. Huang, L. M. & Chen, T. S. 1974a Stability of developing pipe flow subjected to nonaxisymmetric disturbances. J. Fluid Mech. 63, 183193.CrossRefGoogle Scholar
13. Huang, L. M. & Chen, T. S. 1974b Stability of the developing laminar pipe flow. Phys. Fluids 17, 245247.CrossRefGoogle Scholar
14. Leite, R. J. 1959 An experimental investigation of the stability of Poiseuille flow. J. Fluid Mech. 5, 8196.CrossRefGoogle Scholar
15. Li, L., Walker, J. D. A., Bowles, R. I. & Smith, F. T. 1998 Short-scale break-up in unsteady interactive layers: local development of normal pressure gradients and vortex wind-up. J. Fluid Mech. 374, 335378.CrossRefGoogle Scholar
16. Lin, C. C. 1955 The Theory of Hydrodynamic Stability. Cambridge University Press.Google Scholar
17. Nishi, M., Unsal, B., Durst, F. & Biswas, G. 2008 Laminar-to-turbulent transition of pipe flows through puffs and slugs. J. Fluid Mech. 614, 425446.CrossRefGoogle Scholar
18. O’Sullivan, P. L. & Breuer, K. S. 1994 Transient growth in circular pipe flow. Part II. Nonlinear development. Phys. Fluids 6, 36523664.CrossRefGoogle Scholar
19. Priymak, V. G. & Miyazaki, T. 2004 Direct numerical simulation of equilibrium spatially localized structures in pipe flow. Phys. Fluids 16, 42214234.CrossRefGoogle Scholar
20. Reid, W. H. 1965 The stability of parallel flows. In Basic Developments in Fluid Dynamics, vol. 1 (ed. Holt, M. ). Academic.Google Scholar
21. Reynolds, O. 1883 An experimental investigation of the circumstances which determine whether the motion of water will be direct or sinuous, and of the law of resistance in parallel channels. Phil. Trans. R. Soc. Lond. A 174, 935982.Google Scholar
22. Salwen, H., Cotton, F. W. & Grosch, C. E. 1980 Linear stability of Poiseuille flow in a circular pipe. J. Fluid Mech. 98, 273284.CrossRefGoogle Scholar
23. Sarpkaya, T. 1975 A note on the stability of developing laminar pipe flow subjected to axisymmetric and non-axisymmetric disturbances. J. Fluid Mech. 68, 345351.CrossRefGoogle Scholar
24. Schmid, P. J. & Henningson, D. S. 2000 Stability and Transition in Shear Flows. Springer.Google Scholar
25. Shan, H., Ma, B., Zhang, Z. & Nieuwstadt, F. T. M. 1999 Direct numerical simulation of a puff and a slug in transitional cylindrical pipe flow. J. Fluid Mech. 387, 3960.CrossRefGoogle Scholar
26. Smith, F. T. 1988 Finite-time break-up can occur in any unsteady interacting boundary layer. Mathematika 35, 256273.CrossRefGoogle Scholar
27. Smith, F. T. & Bodonyi, R. J. 1982 Amplitude-dependent neutral modes in the Hagen–Poiseuille flow through a circular pipe. Proc. R. Soc. Lond. A 384, 463489.Google Scholar
28. Smith, F. T., Doorly, D. J. & Rothmayer, A. P. 1990 On displacement-thickness, wall-layer and mid-flow scales in turbulent boundary layers, and slugs of vorticity in channel and pipe flows. Proc R. Soc. Lond. A 428, 255281.Google Scholar
29. Stuart, J. T. 1963 Hydrodynamic stability. In Laminar Boundary Layers (ed. Rosenhead, L. ). Dover.Google Scholar
30. Szymanski, P. 1932 Quelques solutions exactes des équations de l’hydrodynamique du fluide visqueux dans le cas d’un tube cylindrique. J. Math. Pures Appliquees 11, 67107.Google Scholar
31. Tatsumi, T. 1952a Stability of the laminar inlet-flow prior to the formation of Poiseuille regime. Part I. J. Phys. Soc. Japan 7, 489495.CrossRefGoogle Scholar
32. Tatsumi, T. 1952b Stability of the laminar inlet-flow prior to the formation of Poiseuille regime. Part II. J. Phys. Soc. Japan 7, 495502.CrossRefGoogle Scholar
33. Walton, A. G. 2002 The temporal evolution of neutral modes in the impulsively started flow through a circular pipe and their connection to the nonlinear stability of Hagen–Poiseuille flow. J. Fluid Mech. 457, 339376.CrossRefGoogle Scholar
34. Walton, A. G. 2004 The stability of nonlinear neutral modes in Hagen–Poiseuille flow. Proc. R. Soc. Lond. A 461, 813824.Google Scholar
35. Wedin, H. & Kerswell, R. R. 2004 Exact coherent structures in pipe flow: travelling wave solutions. J. Fluid Mech. 508, 333371.CrossRefGoogle Scholar
36. Wygnanski, I. J. & Champagne, F. H. 1973 On transition in a pipe. Part 1. The origin of puffs and slugs and the flow in a turbulent slug. J. Fluid Mech. 59, 281335.CrossRefGoogle Scholar
37. Wygnanski, I. J., Sokolov, M. & Friedman, D. 1975 On transition in a pipe. Part 2. The equilibrium puff. J. Fluid Mech. 69, 283304.CrossRefGoogle Scholar