Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T23:42:04.788Z Has data issue: false hasContentIssue false

Spreading and breakup of a compound drop on a partially wetting substrate

Published online by Cambridge University Press:  01 July 2011

PENG GAO
Affiliation:
Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
JAMES J. FENG*
Affiliation:
Department of Chemical and Biological Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, Canada
*
Email address for correspondence: jfeng@math.ubc.ca

Abstract

The spreading of a compound drop on a partially wetting solid substrate is numerically simulated using a diffuse-interface method. Compared with a simple drop, the spreading of a compound drop exhibits much more complex behaviour. Depending on the core–shell size ratio and the substrate wettability, various flow regimes are identified in which the interfacial morphology evolves in distinct ways. A phase diagram is constructed in the parameter space of the core–shell size ratio and the wetting angle. For relatively small inner drops, the outer interface does not rupture during the spreading and the inner drop either remains suspended and encapsulated or attaches onto the substrate. Otherwise, the compound drop spontaneously breaks up and releases the inner drop into the ambient fluid. Several breakup scenarios are observed depending on the location of the initial rupture. In some regimes, the wetting of the substrate by one fluid can entrap secondary drops of the other, which can either attach to the substrate or stay suspended. The viscosity ratio mainly affects the spreading rate and plays a minor role in the morphology evolution.

Type
Papers
Copyright
Copyright © Cambridge University Press 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Present address: Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China.

References

REFERENCES

Bird, J. C., de Ruiter, R., Courbin, L. & Stone, H. A. 2010 Daughter bubble cascades produced by folding of ruptured thin films. Nature 465, 759762.CrossRefGoogle ScholarPubMed
Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. 2009 Wetting and spreading. Rev. Mod. Phys. 81, 739805.CrossRefGoogle Scholar
Chiu, S. L. & Lin, T. H. 2005 Experiment on the dynamics of a compound drop impinging on a hot surface. Phys. Fluids 17, 122103.CrossRefGoogle Scholar
Cox, R. G. 1986 The dynamics of the spreading of liquids on a solid surface. Part 1. Viscous flow. J. Fluid Mech. 168, 169194.CrossRefGoogle Scholar
Culick, F. E. C. 1960 Comments on a ruptured soap film. J. Appl. Phys. 31, 11281129.CrossRefGoogle Scholar
Debrégeas, G., de Gennes, P. G. & Brochard-Wyart, F. 1998 The life and death of ‘bare’ viscous bubbles. Science 279, 17041707.CrossRefGoogle Scholar
Debrégeas, G., Martin, P. & Brochard-Wyart, F. 1995 Viscous bursting of suspended films. Phys. Rev. Lett. 75, 38863889.CrossRefGoogle ScholarPubMed
Engel, R. H., Riggi, S. J. & Fahrenba, M. J. 1968 Insulin: Intestinal absorption as water-in-oil-in-water emulsions. Nature 219, 856857.CrossRefGoogle ScholarPubMed
Feng, J. J., Liu, C., Shen, R. & Yue, P. T. 2005 An energetic variational formulation with phase field methods for interfacial dynamics of complex fluids: Advantages and challenges. In Modeling of Soft Matter (ed. Calderer, M.-C. T. & Terentjev, E.), IMA Volumes in Mathematics and its Applications, vol. 141, pp. 126. Springer.Google Scholar
Garti, N. & Bisperink, C. 1998 Double emulsions: Progress and applications. Curr. Opin. Colloid Interface Sci. 3, 657667.CrossRefGoogle Scholar
Hochmuth, R. M., Tingbeall, H. P., Beaty, B. B., Needham, D. & Transontay, R. 1993 Viscosity of passive human neutrophils undergoing small deformations. Biophys. J. 64, 15961601.CrossRefGoogle ScholarPubMed
Jacqmin, D. 2000 Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402, 5788.CrossRefGoogle Scholar
Johnson, R. E. & Sadhal, S. S. 1985 Fluid mechanics of compound multiphase drops and bubbles. Annu. Rev. Fluid Mech. 17, 289320.CrossRefGoogle Scholar
Kan, H. C., Udaykumar, H. S., Shyy, W. & Tran-Son-Tay, R. 1998 Hydrodynamics of a compound drop with application to leukocyte modeling. Phys. Fluids 10, 760774.CrossRefGoogle Scholar
Kawano, S., Shirai, A. & Nagasaka, S. 2007 Deformations of thin liquid spherical shells in liquid–liquid–gas systems. Phys. Fluids 19, 012105.CrossRefGoogle Scholar
Khatavkar, V. V., Anderson, P. D. & Meijer, H. E. H. 2007 Capillary spreading of a droplet in the partially wetting regime using a diffuse-interface model. J. Fluid Mech. 572, 367387.CrossRefGoogle Scholar
Laugel, C., Rafidison, P., Potard, G., Aguadisch, L. & Baillet, A. 2000 Modulated release of triterpenic compounds from a O/W/O multiple emulsion formulated with dimethicones: infrared spectrophotometric and differential calorimetric approaches. J. Control. Release 63, 717.CrossRefGoogle Scholar
Mahadevan, L., Adda-Bedia, M. & Pomeau, Y. 2002 Four-phase merging in sessile compound drops. J. Fluid Mech. 451, 411420.CrossRefGoogle Scholar
Muguet, V., Seiller, M., Barratt, G., Ozer, O., Marty, J. P. & Grossiord, J. L. 2001 Formulation of shear rate sensitive multiple emulsions. J. Control. Release 70, 3749.CrossRefGoogle ScholarPubMed
Okushima, S., Nisisako, T., Torii, T. & Higuchi, T. 2004 Controlled production of monodisperse double emulsions by two-step droplet breakup in microfluidic devices. Langmuir 20, 99059908.CrossRefGoogle ScholarPubMed
Qian, T. Z., Wang, X. P. & Sheng, P. 2006 A variational approach to moving contact line hydrodynamics. J. Fluid Mech. 564, 333360.CrossRefGoogle Scholar
Ranz, W. E. 1959 Some experiments on the dynamics of liquid films. J. Appl. Phys. 30, 19501955.CrossRefGoogle Scholar
Rushton, E. & Davies, G. A. 1983 Settling of encapsulated droplets at low Reynolds numbers. Intl J. Multiphase Flow 9, 337342.CrossRefGoogle Scholar
Sadhal, S. S., Ayyaswamy, P. S. & Chung, J. N. 1997 Transport Phenomena with Drops and Bubbles. Springer.CrossRefGoogle Scholar
Sadhal, S. S. & Oguz, H. N. 1985 Stokes-flow past compound multiphase drops: the case of completely engulfed drops bubbles. J. Fluid Mech. 160, 511529.CrossRefGoogle Scholar
Savva, N. & Bush, J. W. M. 2009 Viscous sheet retraction. J. Fluid Mech. 626, 211240.CrossRefGoogle Scholar
Smith, K. A., Ottino, J. M. & de la Cruz, M. O. 2004 Encapsulated drop breakup in shear flow. Phys. Rev. Lett. 93, 204501.CrossRefGoogle ScholarPubMed
Stone, H. A. & Leal, L. G. 1990 Breakup of concentric double emulsion droplets in linear flows. J. Fluid Mech. 211, 123156.CrossRefGoogle Scholar
Stroeve, P. & Varanasi, P. P. 1984 An experimental-study on double emulsion drop breakup in uniform shear flow. J. Colloid Interface Sci. 99, 360373.CrossRefGoogle Scholar
Taylor, G. I. 1959 The dynamics of thin sheets of fluid. III. Disintegration of fluid sheets. Proc. R. Soc. Lond. A 253, 313321.Google Scholar
Utada, A. S., Lorenceau, E., Link, D. R., Kaplan, P. D., Stone, H. A. & Weitz, D. A. 2005 Monodisperse double emulsions generated from a microcapillary device. Science 308, 537541.CrossRefGoogle ScholarPubMed
Yap, B. & Kamm, R. D. 2005 Mechanical deformation of neutrophils into narrow channels induces pseudopod projection and changes in biomechanical properties. J. Appl. Physiol. 98, 19301939.CrossRefGoogle ScholarPubMed
Yue, P. T. & Feng, J. J. 2011 Wall energy relaxation in the Cahn–Hilliard model for moving contact lines. Phys. Fluids 23, 012106.CrossRefGoogle Scholar
Yue, P. T., Feng, J. J., Liu, C. & Shen, J. 2005 Diffuse-interface simulations of drop coalescence and retraction in viscoelastic fluids. J. Non-Newtonian Fluid Mech. 129, 163176.CrossRefGoogle Scholar
Yue, P. T., Zhou, C. F. & Feng, J. J. 2006 a A computational study of the coalescence between a drop and an interface in Newtonian and viscoelastic fluids. Phys. Fluids 18, 102102.CrossRefGoogle Scholar
Yue, P. T., Zhou, C. F. & Feng, J. J. 2010 Sharp interface limit of the Cahn–Hilliard model for moving contact lines. J. Fluid Mech. 645, 279294.CrossRefGoogle Scholar
Yue, P. T., Zhou, C. F., Feng, J. J., Ollivier-Gooch, C. F. & Hu, H. H. 2006 b Phase-field simulations of interfacial dynamics in viscoelastic fluids using finite elements with adaptive meshing. J. Comput. Phys. 219, 4767.CrossRefGoogle Scholar
Zhou, C. F., Yue, P. T. & Feng, J. J. 2008 Deformation of a compound drop through a contraction in a pressure-driven pipe flow. Intl J. Multiphase Flow 34, 102109.CrossRefGoogle Scholar
Zhou, C. F., Yue, P. T. & Feng, J. J. 2010 3D phase-field simulations of interfacial dynamics in Newtonian and viscoelastic fluids. J. Comput. Phys. 229, 498511.CrossRefGoogle Scholar
Zosel, A. 1993 Studies of the wetting kinetics of liquid drops on solid surfaces. Colloid Polym. Sci. 271, 680687.CrossRefGoogle Scholar