Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T09:54:02.791Z Has data issue: false hasContentIssue false

Spherical convective dynamos in the rapidly rotating asymptotic regime

Published online by Cambridge University Press:  20 January 2017

Julien Aubert*
Affiliation:
Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris-Diderot, CNRS, 1 rue Jussieu, F-75005 Paris, France
Thomas Gastine
Affiliation:
Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris-Diderot, CNRS, 1 rue Jussieu, F-75005 Paris, France
Alexandre Fournier
Affiliation:
Institut de Physique du Globe de Paris, Sorbonne Paris Cité, Université Paris-Diderot, CNRS, 1 rue Jussieu, F-75005 Paris, France
*
Email address for correspondence: aubert@ipgp.fr

Abstract

Self-sustained convective dynamos in planetary systems operate in an asymptotic regime of rapid rotation, where a balance is thought to hold between the Coriolis, pressure, buoyancy and Lorentz forces (the MAC balance). Classical numerical solutions have previously been obtained in a regime of moderate rotation where viscous and inertial forces are still significant. We define a uni-dimensional path in parameter space between classical models and asymptotic conditions from the requirements to enforce a MAC balance and to preserve the ratio between the magnetic diffusion and convective overturn times (the magnetic Reynolds number). Direct numerical simulations performed along this path show that the spatial structure of the solution at scales larger than the magnetic dissipation length is largely invariant. This enables the definition of large-eddy simulations resting on the assumption that small-scale details of the hydrodynamic turbulence are irrelevant to the determination of the large-scale asymptotic state. These simulations are shown to be in good agreement with direct simulations in the range where both are feasible, and can be computed for control parameter values far beyond the current state of the art, such as an Ekman number $E=10^{-8}$ . We obtain strong-field convective dynamos approaching the MAC balance and a Taylor state to an unprecedented degree of accuracy. The physical connection between classical models and asymptotic conditions is shown to be devoid of abrupt transitions, demonstrating the asymptotic relevance of classical numerical dynamo mechanisms. The fields of the system are confirmed to follow diffusivity-free, power-based scaling laws along the path.

Type
Papers
Copyright
© 2017 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aubert, J. 2005 Steady zonal flows in spherical shell dynamos. J. Fluid Mech. 542, 5367.Google Scholar
Aubert, J. 2014 Earth’s core internal dynamics 1840–2010 imaged by inverse geodynamo modelling. Geophys. J. Intl 197 (3), 13211334.CrossRefGoogle Scholar
Aubert, J., Aurnou, J. & Wicht, J. 2008 The magnetic structure of convection-driven numerical dynamos. Geophys. J. Intl 172, 945956.Google Scholar
Aubert, J., Finlay, C. C. & Fournier, A. 2013 Bottom-up control of geomagnetic secular variation by the Earth’s inner core. Nature 502, 219223.Google Scholar
Aubert, J., Labrosse, S. & Poitou, C. 2009 Modelling the palaeo-evolution of the geodynamo. Geophys. J. Intl 179 (3), 14141428.Google Scholar
Aurnou, J., Andreadis, S., Zhu, L. & Olson, P. 2003 Experiments on convection in Earth’s core tangent cylinder. Earth Planet. Sci. Lett. 212, 119134.Google Scholar
Aurnou, J. M. 2007 Planetary core dynamics and convective heat transfer scaling. Geophys. Astrophys. Fluid Dyn. 101 (5–6), 327345.Google Scholar
Aurnou, J. M., Calkins, M. A., Cheng, J. S., Julien, K., King, E. M., Nieves, D., Soderlund, K. M. & Stellmach, S. 2015 Rotating convective turbulence in earth and planetary cores. Phys. Earth Planet. Inter. 246, 5271.Google Scholar
Baerenzung, J., Mininni, P. D., Pouquet, A., Politano, H. & Ponty, Y. 2010 Spectral modeling of rotating turbulent flows. Phys. Fluids 22 (2), 025104.Google Scholar
Baerenzung, J., Politano, H., Ponty, Y. & Pouquet, A. 2008 Spectral modeling of magnetohydrodynamic turbulent flows. Phys. Rev. E 78, 026310.Google Scholar
Braginsky, S. I. 1967 Magnetic waves in the Earth’s core. Geomagn. Aeron. 7, 10501060.Google Scholar
Braginsky, S. I. 1993 MAC-oscillations in the hidden ocean of the core. J. Geomagn. Geoelectr. 45 (11–12), 15171538.CrossRefGoogle Scholar
Braginsky, S. I. & Roberts, P. H. 1995 Equations governing convection in Earth’s core and the geodynamo. Geophys. Astrophys. Fluid Dyn. 79 (1–4), 197.Google Scholar
Buffett, B. A. 2010 Tidal dissipation and the strength of the Earth’s internal magnetic field. Nature 468 (7326), 952955.Google Scholar
Buffett, B. A. 2014 Geomagnetic fluctuations reveal stable stratification at the top of the Earth’s core. Nature 507 (7493), 484487.Google Scholar
Busse, F. H. 1970 Thermal instabilities in rapidly rotating systems. J. Fluid Mech. 44 (3), 441460.Google Scholar
Calkins, M. A., Julien, K., Tobias, S. M. & Aurnou, J. M. 2015 A multiscale dynamo model driven by quasi-geostrophic convection. J. Fluid Mech. 780, 143166.Google Scholar
Cheng, J. S. & Aurnou, J. M. 2016 Tests of diffusion-free scaling behaviors in numerical dynamo datasets. Earth Planet. Sci. Lett. 436, 121129.Google Scholar
Christensen, U. & Tilgner, A. 2004 Power requirement of the geodynamo from ohmic losses in numerical and laboratory dynamos. Nature 429, 169171.Google Scholar
Christensen, U. R. 2008 Earth science: a sheet-metal geodynamo. Nature 454 (7208), 10581059.CrossRefGoogle ScholarPubMed
Christensen, U. R. 2010 Dynamo scaling laws and applications to the planets. Space. Sci. Rev. 152 (1), 565590.Google Scholar
Christensen, U. R. & Aubert, J. 2006 Scaling properties of convection-driven dynamos in rotating spherical shells and application to planetary magnetic fields. Geophys. J. Intl 166, 97114.Google Scholar
Christensen, U. R., Aubert, J., Busse, F. H., Cardin, P., Dormy, E., Gibbons, S., Glatzmaier, G. A., Honkura, Y., Jones, C. A., Kono, M. et al. 2001 A numerical dynamo benchmark. Phys. Earth Planet. Inter. 128, 2534.Google Scholar
Christensen, U. R., Aubert, J. & Hulot, G. 2010 Conditions for Earth-like geodynamo models. Earth Planet. Sci. Lett. 296 (3–4), 487496.Google Scholar
Christensen, U. R., Holzwarth, V. & Reiners, A. 2009 Energy flux determines magnetic field strength of planets and stars. Nature 457 (7226), 167169.Google Scholar
Christensen, U. R. & Wicht, J. 2015 8.10 – Numerical dynamo simulations. In Treatise on Geophysics, 2nd edn. (ed. Schubert, G.), pp. 245277. Elsevier.Google Scholar
Davidson, P. A. 2013 Scaling laws for planetary dynamos. Geophys. J. Intl 195 (1), 6774.Google Scholar
Dormy, E. 2016 Strong-field spherical dynamos. J. Fluid Mech. 789, 500513.CrossRefGoogle Scholar
Dormy, E., Cardin, P. & Jault, D. 1998 MHD flow in a slightly differentially rotating spherical shell, with conducting inner core, in a dipolar magnetic field. Earth Planet. Sci. Lett. 160 (1–2), 1530.Google Scholar
Gastine, T., Heimpel, M. & Wicht, J. 2014 Zonal flow scaling in rapidly-rotating compressible convection. Phys. Earth Planet. Inter. 232, 3650.Google Scholar
Gastine, T., Wicht, J. & Aurnou, J. M. 2015 Turbulent Rayleigh–Bénard convection in spherical shells. J. Fluid Mech. 778, 721764.Google Scholar
Gastine, T., Wicht, J., Barik, A., Putigny, B. & Duarte, L. D. V.2016 MagIC v5.4, doi:10.5281/zenodo.51723.Google Scholar
Gillet, N., Jault, D., Canet, E. & Fournier, A. 2010 Fast torsional waves and strong magnetic field within the Earth’s core. Nature 465 (7294), 7477.Google Scholar
Gillet, N. & Jones, C. A. 2006 The quasi-geostrophic model for rapidly rotating spherical convection outside the tangent cylinder. J. Fluid Mech. 554, 343369.Google Scholar
Gilman, P. A. 1977 Nonlinear dynamics of Boussinesq convection in a deep rotating spherical shell. I. Geophys. Astrophys. Fluid Dyn. 8, 93135.Google Scholar
Glatzmaier, G. A. & Roberts, P. H. 1995 A 3-dimensional self-consistent computer-simulation of a geomagnetic-field reversal. Nature 377 (6546), 203209.Google Scholar
Grote, E., Busse, F. H. & Tilgner, A. 2000 Effects of hyperdiffusivities on dynamo simulations. Geophys. Res. Lett. 27 (13), 20012004.Google Scholar
Hollerbach, R. 1996 On the theory of the geodynamo. Phys. Earth Planet. Inter. 98 (3–4), 163185.Google Scholar
Hughes, D. W. & Cattaneo, F. 2016 Strong-field dynamo action in rapidly rotating convection with no inertia. Phys. Rev. E 93, 061101.Google Scholar
Julien, K., Knobloch, E., Rubio, A. M. & Vasil, G. M. 2012 Heat transport in low-Rossby-number Rayleigh–Bénard convection. Phys. Rev. Lett. 109 (25), 254503.Google Scholar
Kageyama, A., Miyagoshi, T. & Sato, T. 2008 Formation of current coils in geodynamo simulations. Nature 454 (7208), 11061109.Google Scholar
King, E. M. & Aurnou, J. M. 2015 Magnetostrophic balance as the optimal state for turbulent magnetoconvection. Proc. Natl Acad. Sci. 112 (4), 990994.Google Scholar
King, E. M. & Buffett, B. A. 2013 Flow speeds and length scales in geodynamo models: the role of viscosity. Earth Planet Sci. Lett. 371, 156162.Google Scholar
King, E. M., Soderlund, K. M., Christensen, U. R., Wicht, J. & Aurnou, J. M. 2010 Convective heat transfer in planetary dynamo models. Geochem. Geophys. Geosyst. 11, Q06016.Google Scholar
Konôpková, Z., McWilliams, R. S., Gómez–Pérez, N. & Goncharov, A. F. 2016 Direct measurement of thermal conductivity in solid iron at planetary core conditions. Nature 534 (7605), 99101.Google Scholar
Lister, J. R. 2003 Expressions for the dissipation driven by convection in the Earth’s core. Phys. Earth Planet. Inter. 140 (1–3), 145158.Google Scholar
Livermore, P. W., Bailey, L. M. & Hollerbach, R. 2016 A comparison of no-slip, stress-free and inviscid models of rapidly rotating fluid in a spherical shell. Sci. Rep. 6, 22812.Google Scholar
Malkus, W. V. R. & Proctor, M. R. E. 1975 The macrodynamics of alpha-effect dynamos in rotating fluids. J. Fluid Mech. 67, 417443.Google Scholar
Matsui, H. & Buffett, B. A. 2013 Characterization of subgrid-scale terms in a numerical geodynamo simulation. Phys. Earth Planet. Inter. 223, 7785.Google Scholar
Miyagoshi, T., Kageyama, A. & Sato, T. 2010 Zonal flow formation in the Earth’s core. Nature 463 (7282), 793796.Google Scholar
Nataf, H.-C. & Schaeffer, N. 2015 Turbulence in the core. In Treatise on Geophysics, pp. 161181. Elsevier.Google Scholar
Ohta, K., Kuwayama, Y., Hirose, K., Shimizu, K. & Ohishi, Y. 2016 Experimental determination of the electrical resistivity of iron at Earth’s core conditions. Nature 534 (7605), 9598.Google Scholar
Oruba, L. 2016 On the role of thermal boundary conditions in dynamo scaling laws. Geophys. Astrophys. Fluid Dyn. 110 (6), 529545.Google Scholar
Oruba, L. & Dormy, E. 2014 Predictive scaling laws for spherical rotating dynamos. Geophys. J. Intl 198 (2), 828847.Google Scholar
Pichon, G., Aubert, J. & Fournier, A. 2016 Coupled dynamics of Earth’s geomagnetic westward drift and inner core super-rotation. Earth Planet. Sci. Lett. 437, 114126.Google Scholar
Pozzo, M., Davies, C. J., Gubbins, D. & Alfè, D. 2012 Thermal and electrical conductivity of iron at Earth’s core conditions. Nature 485 (7398), 355358.CrossRefGoogle ScholarPubMed
Roberts, P. H. 1978 Magnetoconvection in a rapidly rotating fluid. In Rotating Fluids in Geophysics (ed. Roberts, P. H. & Soward, A. M.), pp. 421435. Academic.Google Scholar
Sakuraba, A. & Roberts, P. H. 2009 Generation of a strong magnetic field using uniform heat flux at the surface of the core. Nature Geosci. 2 (11), 802805.Google Scholar
Schaeffer, N. 2013 Efficient spherical harmonic transforms aimed at pseudospectral numerical simulations. Geophys. Geochem. Geosyst. 14 (3), 751758.Google Scholar
Sheyko, A., Finlay, C. C. & Jackson, A. 2016 Magnetic reversals from planetary dynamo waves. Nature 539, 551554.Google Scholar
Soderlund, K. M., King, E. M. & Aurnou, J. M. 2012 The influence of magnetic fields in planetary dynamo models. Earth Planet Sci. Lett. 333, 920.Google Scholar
Soderlund, K. M., Sheyko, A., King, E. M. & Aurnou, J. M. 2015 The competition between Lorentz and Coriolis forces in planetary dynamos. Prog. Earth Planet. Sci. 2 (1), 110.Google Scholar
Soward, A. M. 1974 A convection-driven dynamo: I. The weak field case. Phil. Trans. R. Soc. Lond. A 275 (1256), 611646.Google Scholar
Starchenko, S. V. & Jones, C. A. 2002 Typical velocities and magnetic field strengths in planetary interiors. Icarus 157 (2), 426435.Google Scholar
Stellmach, S., Lischper, M., Julien, K., Vasil, G., Cheng, J. S., Ribeiro, A., King, E. M. & Aurnou, J. M. 2014 Approaching the asymptotic regime of rapidly rotating convection: boundary layers versus interior dynamics. Phys. Rev. Lett. 113, 254501.Google Scholar
Stelzer, Z. & Jackson, A. 2013 Extracting scaling laws from numerical dynamo models. Geophys. J. Intl 193 (3), 12651276.Google Scholar
Takahashi, F. & Shimizu, H. 2012 A detailed analysis of a dynamo mechanism in a rapidly rotating spherical shell. J. Fluid Mech. 701, 228250.Google Scholar
Taylor, J. B. 1963 Magneto-hydrodynamics of a rotating fluid and Earth’s dynamo problem. Proc. R. Soc. Lond. A 9, 274283.Google Scholar
Teed, R. J., Jones, C. A. & Tobias, S. M. 2015 The transition to Earth-like torsional oscillations in magnetoconvection simulations. Earth Planet Sci. Lett. 419, 2231.Google Scholar
Wicht, J. 2002 Inner-core conductivity in numerical dynamo simulations. Phys. Earth Planet. Inter. 132, 281302.Google Scholar
Wicht, J. & Christensen, U. R. 2010 Torsional oscillations in dynamo simulations. Geophys. J. Intl 181 (3), 13671380.Google Scholar
Wu, C. & Roberts, P. H. 2015 On magnetostrophic mean-field solutions of the geodynamo equations. Geophys. Astrophys. Fluid Dyn. 109 (1), 84110.Google Scholar
Yadav, R. K., Gastine, T. & Christensen, U. R. 2013a Scaling laws in spherical shell dynamos with free-slip boundaries. Icarus 225 (1), 185193.Google Scholar
Yadav, R. K., Gastine, T., Christensen, U. R. & Duarte, L. D. V. 2013b Consistent scaling laws in anelastic spherical shell dynamos. Astrophys. J. 774 (1), 6.Google Scholar
Yadav, R. K., Gastine, T., Christensen, U. R., Duarte, L. D. V. & Reiners, A. 2016a Effect of shear and magnetic field on the heat-transfer efficiency of convection in rotating spherical shells. Geophys. J. Intl 204 (2), 11201133.Google Scholar
Yadav, R. K., Gastine, T., Christensen, U. R., Wolk, S. J. & Poppenhaeger, K. 2016b Approaching a realistic force balance in geodynamo simulations. Proc. Natl Acad. Sci. 113 (43), 1206512070.Google Scholar
Zhang, K. & Jones, C. A. 1997 The effect of hyperviscosity on geodynamo models. Geophys. Res. Lett. 24 (22), 28692872.Google Scholar