Hostname: page-component-68c7f8b79f-fnvtc Total loading time: 0 Render date: 2025-12-18T16:07:06.343Z Has data issue: false hasContentIssue false

Spectral analysis of turbulence energy transport in a channel mounted with circular-arc ribs

Published online by Cambridge University Press:  18 December 2025

Wei-Jian Xiong
Affiliation:
State Key Laboratory of Mechanics and Control of Aeronautics and Astronautics Structures, Nanjing University of Aeronautics and Astronautics, 29th Yudao Street, Nanjing, PR China
Jinglei Xu
Affiliation:
State Key Laboratory of Mechanics and Control of Aeronautics and Astronautics Structures, Nanjing University of Aeronautics and Astronautics, 29th Yudao Street, Nanjing, PR China
Taylor C. Opperman
Affiliation:
Department of Mechanical Engineering, University of Manitoba , Winnipeg, MB R3T 5V6, Canada
Bing-Chen Wang*
Affiliation:
Department of Mechanical Engineering, University of Manitoba , Winnipeg, MB R3T 5V6, Canada
*
Corresponding author: Bing-Chen Wang, bingchen.wang@umanitoba.ca

Abstract

Spectral analysis of the transport process of turbulence kinetic energy (TKE) in a channel roughened with spanwise-aligned circular-arc ribs is conducted based on direct numerical simulations (DNS). Test cases of varying pitch-to-height ratios ($P/H=3.0$, 5.0 and 7.5) and bulk Reynolds numbers (${\textit{Re}}_b=5600$ and 14 600) are compared. It is observed that the characteristic spanwise wavelength of the energy-containing eddies in the internal shear layer (ISL) increases as the value of $P/H$ increases, but decreases as the Reynolds number increases. In the ISL, the energy transport processes are dominated by turbulent production as the lead source term, but by turbulent diffusion and dissipation as the lead sink terms. It is found that regions with high production and dissipation rates of TKE in the ISL are associated with moderate and small wavelengths, respectively. The TKE production for sustaining moderate- and large-scale motions enhances gradually with an increasing value of $P/H$, while that for sustaining small-scale motions augments as the Reynolds number increases. It is interesting to observe that the interscale-transport term plays a critical role in draining TKE at moderate wavelengths as a sink and carries the drained TKE to small-scale eddies as a source. It is discovered that a higher pitch-to-height ratio leads to shortening of the characteristic spanwise wavelength of the dissipation process but prolongation of those of the production, interscale-transport and turbulent-diffusion processes in the ISL. By contrast, a higher Reynolds number results in reductions in the characteristic spanwise wavelengths of all spectral transport terms.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Adrian, R.J. 2007 Hairpin vortex organization in wall turbulence. Phys. Fluids 19, 041301.10.1063/1.2717527CrossRefGoogle Scholar
Adrian, R.J., Meinhart, C.D. & Tomkins, C.D. 2000 Vortex organization in the outer region of the turbulent boundary layer. J. Fluid Mech. 422, 154.10.1017/S0022112000001580CrossRefGoogle Scholar
Aulery, F., Dupuy, D., Toutant, A., Bataille, F. & Zhou, Y. 2017 Spectral analysis of turbulence in anisothermal channel flows. Comput. Fluids 151, 115131.10.1016/j.compfluid.2016.06.011CrossRefGoogle Scholar
Aulery, F., Toutant, A., Bataille, F. & Zhou, Y. 2015 Energy transfer process of anisothermal wall-bounded flows. Phys. Lett. A 379, 15201526.10.1016/j.physleta.2015.03.022CrossRefGoogle Scholar
Bandyopadhyay, P.R. 1987 Rough-wall turbulent boundary layers in the transition regime. J. Fluid Mech. 180, 231266.10.1017/S0022112087001794CrossRefGoogle Scholar
Blackburn, H.M. & Sherwin, S.J. 2004 Formulation of a Galerkin spectral element–Fourier method for three-dimensional incompressible flows in cylindrical geometries. J. Comput. Phys. 197 (2), 759778.10.1016/j.jcp.2004.02.013CrossRefGoogle Scholar
Burattini, P., Leonardi, S., Orlandi, P. & Antonia, R.A. 2008 Comparison between experiments and direct numerical simulations in a channel flow with roughness on one wall. J. Fluid. Mech. 600, 403426.10.1017/S0022112008000657CrossRefGoogle Scholar
Chernyshenko, S.I. & Baig, M.F. 2005 The mechanism of streak formation in near-wall turbulence. J. Fluid Mech. 544, 99131.10.1017/S0022112005006506CrossRefGoogle Scholar
Cho, M., Hwang, Y. & Choi, H. 2018 Scale interactions and spectral energy transfer in turbulent channel flow. J. Fluid Mech. 854, 474504.10.1017/jfm.2018.643CrossRefGoogle Scholar
Djenidi, L., Elavarasan, R. & Antonia, R.A. 1999 The turbulent boundary layer over transverse square cavities. J. Fluid Mech. 395, 271294.10.1017/S0022112099005911CrossRefGoogle Scholar
Fang, J., Zheltovodov, A.A., Yao, Y., Moulinec, C. & Emerson, D. 2020 On the turbulence amplification in shock-wave/turbulent boundary layer interaction. J. Fluid Mech. 897, A32.10.1017/jfm.2020.350CrossRefGoogle Scholar
Fang, X., Yang, Z., Wang, B.-C. & Bergstrom, D.J. 2017 Direct numerical simulation of turbulent flow in a spanwise rotating square duct at high rotation numbers. Intl J. Heat Fluid Flow 63, 8898.10.1016/j.ijheatfluidflow.2016.05.011CrossRefGoogle Scholar
Hirota, M., Ykosawa, H. & Fujita, H. 1992 Turbulence kinetic energy in turbulent flows through square ducts with rib-roughened walls. Intl J. Heat Fluid Flow 13 (1), 2229.10.1016/0142-727X(92)90056-FCrossRefGoogle Scholar
Hoyas, S. & Jiménez, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to ${Re}_\tau =2003$ . Phys. Fluids 18, 011702.10.1063/1.2162185CrossRefGoogle Scholar
Humble, R.A., Scarano, F. & van Oudheusden, B.W. 2007 Particle image velocimetry measurements of a shock wave/turbulent boundary layer interaction. Exp. Fluids 43 (2), 173183.10.1007/s00348-007-0337-8CrossRefGoogle Scholar
Ikeda, T. & Durbin, P.A. 2007 Direct simulations of a rough-wall channel flow. J. Fluid Mech. 571, 235263.10.1017/S002211200600334XCrossRefGoogle Scholar
Jiménez, J. 2004 Turbulent flow over rough walls. Annu. Rev. Fluid Mech. 36, 173196.10.1146/annurev.fluid.36.050802.122103CrossRefGoogle Scholar
Karniadakis, G. & Sherwin, S. 2005 Spectral/Hp Element Methods for Computational Fluid Dynamics. Oxford University Press.10.1093/acprof:oso/9780198528692.001.0001CrossRefGoogle Scholar
Karniadakis, G.E., Israeli, M. & Orszag, S.A. 1991 High-order splitting methods for the incompressible Navier–Stokes equations. J. Comput. Phys. 97 (2), 414443.10.1016/0021-9991(91)90007-8CrossRefGoogle Scholar
Kawata, T. & Alfredsson, P.H. 2019 Scale interactions in turbulent rotating planar Couette flow: insight through the Reynolds stress transport. J. Fluid Mech. 879, 225295.10.1017/jfm.2019.668CrossRefGoogle Scholar
Kim, J., Moin, P. & Moser, R. 1987 Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133166.10.1017/S0022112087000892CrossRefGoogle Scholar
Lee, J., Kim, J.H. & Lee, J.H. 2016 Scale growth of structures in the turbulent boundary layer with a rod-roughened wall. Phys. Fluids 28, 015104.10.1063/1.4939714CrossRefGoogle Scholar
Lee, M. & Moser, R.D. 2019 Spectral analysis of the budget equation in turbulent channel flows at high Reynolds number. J. Fluid Mech. 860, 886938.10.1017/jfm.2018.903CrossRefGoogle Scholar
Leonardi, S., Orlandi, P. & Antonia, R.A. 2007 Properties of $d$ - and $k$ -type roughness in a turbulent channel flow. Phys. Fluids 19, 101125.10.1063/1.2821908CrossRefGoogle Scholar
Leonardi, S., Orlandi, P., Djenidi, L. & Antonia, R.A. 2004 Structure of turbulent channel flow with square bars on one wall. Intl J. Heat Fluid Flow 25, 384392.10.1016/j.ijheatfluidflow.2004.02.022CrossRefGoogle Scholar
Leonardi, S., Orlandi, P., Djenidi, L. & Antonia, R.A. 2015 Heat transfer in a turbulent channel flow with square bars or circular rods on one wall. J. Fluid Mech. 776, 512530.10.1017/jfm.2015.344CrossRefGoogle Scholar
Lumley, J.L. 1964 Spectral energy budget in wall turbulence. Phys. Fluids 7, 190196.10.1063/1.1711132CrossRefGoogle Scholar
MacDonald, M., Ooi, A., García-Mayoral, R., H., N. & Chung, D. 2018 Direct simulation of high aspect ratio spanwise-aligned bars. J. Fluid Mech. 843, 126155.10.1017/jfm.2018.150CrossRefGoogle Scholar
Mahmoodi-Jezeh, S.V. & Wang, B.-C. 2020 Direct numerical simulation of turbulent flow through a ribbed square duct. J. Fluid Mech. 900, A18.10.1017/jfm.2020.452CrossRefGoogle Scholar
Mansour, N.N., Kim, J. & Moin, P. 1988 Reynolds-stress and dissipation-rate budgets in a turbulent channel flow. J. Fluid Mech. 194, 1544.10.1017/S0022112088002885CrossRefGoogle Scholar
Mizuno, Y. 2016 Spectra of energy transport in turbulent channel flows for moderate Reynolds numbers. J. Fluid Mech. 805, 171187.10.1017/jfm.2016.564CrossRefGoogle Scholar
Moser, R.D., Kim, J. & Mansour, N.N. 1999 Direct numerical simulation of turbulent channel flow up to ${Re}_\tau =590$ . Phys. Fluids 11 (4), 943945.10.1063/1.869966CrossRefGoogle Scholar
Nagano, Y., Hattori, H. & Houra, T. 2004 DNS of velocity and thermal fields in turbulent channel flow with transverse-rib roughness. Intl J. Heat Fluid Flow 25, 393403.10.1016/j.ijheatfluidflow.2004.02.011CrossRefGoogle Scholar
Napoli, E., Armenio, V. & De Marchis, M. 2008 The effect of the slope of irregularly distributed roughness elements on turbulent wall-bounded flows. J. Fluid Mech. 613, 385394.10.1017/S0022112008003571CrossRefGoogle Scholar
Opperman, T.C., Xiong, W.-J. & Wang, B.-C. 2025 Direct numerical simulation of turbulent flow in a channel with a wavy wall. Intl J. Heat Fluid Flow 117, 109996.10.1016/j.ijheatfluidflow.2025.109996CrossRefGoogle Scholar
Perry, A.E., Schofield, W.H. & Joubert, P.N. 1969 Rough wall turbulent boundary layers. J. Fluid Mech. 37, 383413.10.1017/S0022112069000619CrossRefGoogle Scholar
Pope, S.B. 2000 Turbulent Flows. Cambridge University Press.Google Scholar
Robinson, S.K. 1991 Coherent motions in the turbulent boundary layer. Annu. Rev. Fluid Mech. 23, 601639.10.1146/annurev.fl.23.010191.003125CrossRefGoogle Scholar
Rosas, R.H., Zhang, Z.-P. & Wang, B.-C. 2021 Direct numerical simulation of turbulent elliptical pipe flow under system rotation about the major axis. Phys. Rev. Fluids 6, 084609.10.1103/PhysRevFluids.6.084609CrossRefGoogle Scholar
Smith, C.R. & Metzler, S.P. 1983 The characteristics of low-speed streaks in the near-wall region of a turbulent boundary layer. J. Fluid Mech. 129, 2754.10.1017/S0022112083000634CrossRefGoogle Scholar
Thompson, J.F., Frank, C.T. & Mastin, C.W. 1977 Tomcat – a code for numerical generation of boundary-fitted curvilinear coordinate systems on fields containing any number of arbitrary two-dimensional bodies. J. Comput. Phys. 24, 274302.10.1016/0021-9991(77)90038-9CrossRefGoogle Scholar
Volino, R.J., Schultz, M.P. & Flack, K.A. 2007 Turbulence structure in rough- and smooth-wall boundary layers. J. Fluid Mech. 592, 263293.10.1017/S0022112007008518CrossRefGoogle Scholar
Volino, R.J., Schultz, M.P. & Flack, K.A. 2009 Turbulence structure in a boundary layer with two-dimensional roughness. J. Fluid Mech. 635, 75101.10.1017/S0022112009007617CrossRefGoogle Scholar
Xiong, W.-J., Xu, J., Wang, B.-C. & Mahmoodi-Jezeh, S.V. 2023 Direct numerical simulation of turbulent convection in a channel roughened with circular-arc ribs. Intl J. Heat Fluid Flow 104, 109213.10.1016/j.ijheatfluidflow.2023.109213CrossRefGoogle Scholar
Xiong, W.-J., Xu, J., Wang, B.-C. & Mahmoodi-Jezeh, S.V. 2024 Direct numerical simulation of turbulent heat transfer in a channel with circular-arc ribs mounted on one wall. Intl J. Heat Fluid Flow 110, 109638.10.1016/j.ijheatfluidflow.2024.109638CrossRefGoogle Scholar
Yang, Z., Deng, B.-Q., Wang, B.-C. & Shen, L. 2020 Sustaining mechanism of Taylor–Görtler-like vortices in a streamwise-rotating channel flow. Phys. Rev. Fluids 5, 044601.10.1103/PhysRevFluids.5.044601CrossRefGoogle Scholar
Yu, M., Zhao, M., Tang, Z., Yuan, X. & Xu, C. 2022 A spectral inspection for turbulence amplification in oblique shock wave/turbulent boundary layer interaction. J. Fluid Mech. 951, A2.10.1017/jfm.2022.826CrossRefGoogle Scholar
Zhang, Z.-P. & Wang, B.-C. 2019 Numerical simulation of turbulent flow in a circular pipe subjected to radial system rotation. Flow Turbul. Combust. 103, 10571079.10.1007/s10494-019-00062-8CrossRefGoogle Scholar
Zhang, Z.-P. & Wang, B.-C. 2024 Direct numerical simulation of turbulent flow and structures in a circular pipe subjected to axial system rotation. J. Fluid Mech. 1000, A1.10.1017/jfm.2024.649CrossRefGoogle Scholar