Hostname: page-component-7dd5485656-kp629 Total loading time: 0 Render date: 2025-10-31T14:05:59.558Z Has data issue: false hasContentIssue false

Spatio-temporal super-resolution reconstruction of particle image velocimetry-measured vortex flows using generative adversarial networks

Published online by Cambridge University Press:  30 October 2025

Lei Dong
Affiliation:
School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, PR China Yangtze Delta Region Academy in Jiaxing, Beijing Institute of Technology, Jiaxing 314019, PR China
Wenqiang Zhang
Affiliation:
School of Mechatronical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
Dandan Xiao*
Affiliation:
School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, PR China
Xuerui Mao
Affiliation:
School of Interdisciplinary Science, Beijing Institute of Technology, Beijing 100081, PR China State Key Laboratory of Explosion Science and Safety Protection, Beijing 100081, PR China
*
Corresponding author: Dandan Xiao, dxiao@bit.edu.cn

Abstract

High-resolution particle image velocimetry (PIV) particle-to-velocity analyses using small interrogation areas (IAs) often require substantial processing time. To overcome this limitation, a generative adversarial network (GAN)-based model is proposed to achieve spatio-temporal super-resolution (SR) reconstruction from low-resolution PIV data with large IAs, thereby significantly reducing post-processing time. Time-resolved PIV measurements of plasma-induced vortex flows, covering vortex formation, growth, transition and breakdown stages, are employed to train and evaluate the model with multi-scale vortical structures. By sequentially constructing spatial and temporal datasets, the GAN-based model enables reliable SR reconstruction at different scaling factors. Reconstruction accuracy is systematically assessed using time-averaged, instantaneous and phase-averaged velocity fields. At SR factors of $\times$4 and $\times$8, the reconstructed fields closely match high-resolution references, effectively capturing both fluctuating velocities and small-scale vortical structures. In contrast, $\times$16 reconstructions exhibit diminished accuracy due to the loss of fine-scale information from highly downsampled inputs. For time-averaged fields, high-resolution reconstructions reliably capture plasma jet characteristics at all SR factors. To enhance generalisation, transfer learning is introduced to fine tune the parameters of SR-related layers in the generator, enabling accurate reconstructions under varying vortex dynamics. In addition, the efficiency gains in PIV particle-to-velocity analysis and the fundamental limitations on achievable SR factors imposed by spatio-temporal data correlations are discussed. This study demonstrates that GAN-based spatio-temporal SR models offer a promising approach to accelerate PIV analyses while maintaining high reconstruction fidelity with diverse flow conditions.

Information

Type
JFM Papers
Copyright
© The Author(s), 2025. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Berkooz, G., Holmes, P. & Lumley, J.L. 1993 The proper orthogonal decomposition in the analysis of turbulent flows. Annu. Rev. Fluid Mech. 25 (1), 539575.10.1146/annurev.fl.25.010193.002543CrossRefGoogle Scholar
Bouhoubeiny, E. & Druault, P. 2009 Note on the POD-based time interpolation from successive PIV images. Comp. Rend. Mécaniq. 337 (11–12), 776780.10.1016/j.crme.2009.10.003CrossRefGoogle Scholar
Brunton, S.L., Noack, B.R. & Koumoutsakos, P. 2020 Machine learning for fluid mechanics. Annu. Rev. Fluid Mech. 52 (1), 477508.10.1146/annurev-fluid-010719-060214CrossRefGoogle Scholar
Cheng, C. & Zhang, G.-T. 2021 Deep learning method based on physics informed neural network with ResNet block for solving fluid flow problems. Water 13 (4), 423.10.3390/w13040423CrossRefGoogle Scholar
Corke, T.C., Enloe, C.L. & Wilkinson, S.P. 2010 Dielectric barrier discharge plasma actuators for flow control. Annu. Rev. Fluid Mech. 42 (1), 505529.10.1146/annurev-fluid-121108-145550CrossRefGoogle Scholar
Deng, Z., He, C., Liu, Y. & Kim, K.C. 2019 Super-resolution reconstruction of turbulent velocity fields using a generative adversarial network-based artificial intelligence framework. Phys. Fluids 31 (12), 125111.10.1063/1.5127031CrossRefGoogle Scholar
Dong, L., Choi, K.-S., Mao, X. & Wang, Y. 2022 a Development and interaction of vortices over a very low aspect-ratio wing under pitch-up motion. J. Fluid Mech. 943, A42.10.1017/jfm.2022.451CrossRefGoogle Scholar
Dong, L., Choi, K.-S. & Wang, Y. 2022 b Plasma flow control of the tip vortices over a very low aspect-ratio wing. Phys. Fluids 34 (8), 087101.10.1063/5.0101110CrossRefGoogle Scholar
Dong, L., Zhang, W., Ren, J., Yang, X., Xiao, D., Yao, J. & Mao, X. 2025 Transition of counter-rotating plasma-induced vortices into a jet. Phys. Fluids 37 (1), 017174.Google Scholar
Druault, P., Guibert, P. & Alizon, F. 2005 Use of proper orthogonal decomposition for time interpolation from PIV data: application to the cycle-to-cycle variation analysis of in-cylinder engine flows. Exp. Fluids 39 (6), 10091023.10.1007/s00348-005-0035-3CrossRefGoogle Scholar
Durgesh, V. & Naughton, J.W. 2010 Multi-time-delay LSE-POD complementary approach applied to unsteady high-Reynolds-number near wake flow. Exp. Fluids 49 (3), 571583.10.1007/s00348-010-0821-4CrossRefGoogle Scholar
Fukami, K., Fukagata, K. & Taira, K. 2019 Super-resolution reconstruction of turbulent flows with machine learning. J. Fluid Mech. 870, 106120.10.1017/jfm.2019.238CrossRefGoogle Scholar
Fukami, K., Fukagata, K. & Taira, K. 2021 a Machine-learning-based spatio-temporal super resolution reconstruction of turbulent flows. J. Fluid Mech. 909, A9.10.1017/jfm.2020.948CrossRefGoogle Scholar
Fukami, K., Fukagata, K. & Taira, K. 2024 Super-resolution analysis via machine learning: a survey for fluid flows. Theor. Comput. Fluid Dyn. 37, 421444.10.1007/s00162-023-00663-0CrossRefGoogle Scholar
Fukami, K., Maulik, R., Ramachandra, N., Fukagata, K. & Taira, K. 2021 b Global field reconstruction from sparse sensors with Voronoi tessellation-assisted deep learning. Nat. Mach. Intell. 3 (11), 945951.10.1038/s42256-021-00402-2CrossRefGoogle Scholar
Gunes, H. & Rist, U. 2007 Spatial resolution enhancement/smoothing of stereo–particle-image-velocimetry data using proper-orthogonal-decomposition–based and Kriging interpolation methods. Phys. Fluids 19 (6), 064101.10.1063/1.2740710CrossRefGoogle Scholar
He, C. & Liu, Y. 2017 Proper orthogonal decomposition-based spatial refinement of TR-PIV realizations using high-resolution non-TR-PIV measurements. Exp. Fluids 58 (7), 86.10.1007/s00348-017-2371-5CrossRefGoogle Scholar
Hu, B., Yin, Z., Hamrani, A., Leon, A. & McDaniel, D. 2024 Super-resolution-assisted rapid high-fidelity CFD modeling of data centers. Build. Environ. 247, 111036.10.1016/j.buildenv.2023.111036CrossRefGoogle Scholar
Hussein, H.J., Capp, S.P. & George, W.K. 1994 Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J. Fluid Mech. 258, 3175.10.1017/S002211209400323XCrossRefGoogle Scholar
Jeong, J.J.J. & Hussain, F. 1995 On the identification of a vortex. J. Fluid Mech. 332 (1), 339363.Google Scholar
Jiang, Z., Maceda, C., Guy, Y., Wang, T., Gao, N. & Noack, B.R. 2025 Smart skin separation control with micro–macro machine learning feedback. Phys. Fluids 37 (6), 065120.10.1063/5.0275415CrossRefGoogle Scholar
Jolicoeur-Martineau, A. 2018 The relativistic discriminator: a key element missing from standard GAN.arXiv: 1807.00734.Google Scholar
Jukes, T.N. & Choi, K.-S. 2009 Flow control around a circular cylinder using pulsed dielectric barrier discharge surface plasma. Phys. Fluids 21 (8), 084103.10.1063/1.3194307CrossRefGoogle Scholar
Keane, R.D., Adrian, R. & Zhang, Y. 1995 Super-resolution particle imaging velocimetry. Meas. Sci. Technol. 6 (6), 754.10.1088/0957-0233/6/6/013CrossRefGoogle Scholar
Kline, S.J. 1963 Describing uncertainties in single-sample experiments. Exp. Therm Fluid Sci. 75, 38.Google Scholar
Ledig, C. et al. 2017 Photo-realistic single image super-resolution using a generative adversarial network. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 46814690.Google Scholar
Legrand, M., Nogueira, J. & Lecuona, A. 2011 Flow temporal reconstruction from non-time-resolved data part I: mathematic fundamentals. Exp. Fluids 51 (4), 10471055.10.1007/s00348-011-1111-5CrossRefGoogle Scholar
Li, Z., Han, W., Zhang, Y., Fu, Q., Li, J., Qin, L., Dong, R., Sun, H., Deng, Y. & Yang, L. 2024 Learning spatiotemporal dynamics with a pretrained generative model. Nat. Mach. Intell. 6 (12), 15661579.10.1038/s42256-024-00938-zCrossRefGoogle Scholar
Li, Z.-Y., Feng, L.-H., Wang, T. & Liang, Y. 2023 Lift generation mechanism of the leading-edge vortex for an unsteady plate. J. Fluid Mech. 972, A30.10.1017/jfm.2023.569CrossRefGoogle Scholar
Liu, B., Tang, J., Huang, H. & Lu, X.-Y. 2020 Deep learning methods for super-resolution reconstruction of turbulent flows. Phys. Fluids 32 (2), 025105.10.1063/1.5140772CrossRefGoogle Scholar
Manohar, K.H., Morton, C. & Ziadé, P. 2022 Sparse sensor-based cylinder flow estimation using artificial neural networks. Phys. Rev. Fluids 7 (2), 024707.10.1103/PhysRevFluids.7.024707CrossRefGoogle Scholar
Mishra, B.K. & Panigrahi, P.K. 2025 Dynamics and 3-D instability of flow induced by the dielectric-barrier-discharge plasma actuator in an initially quiescent medium. J. Fluid Mech. 1008, A50.10.1017/jfm.2025.198CrossRefGoogle Scholar
Morimoto, M., Fukami, K., Maulik, R., Vinuesa, R. & Fukagata, K. 2022 Assessments of epistemic uncertainty using Gaussian stochastic weight averaging for fluid-flow regression. Physica D 440, 133454.10.1016/j.physd.2022.133454CrossRefGoogle Scholar
Nair, N.J. & Goza, A. 2020 Leveraging reduced-order models for state estimation using deep learning. J. Fluid Mech. 897, R1.10.1017/jfm.2020.409CrossRefGoogle Scholar
Nista, L., Pitsch, H., Schumann, C.D.K., Bode, M., Grenga, T., MacArt, J.F. & Attili, A. 2024 Influence of adversarial training on super-resolution turbulence reconstruction. Phys. Rev. Fluids 9 (6), 064601.10.1103/PhysRevFluids.9.064601CrossRefGoogle Scholar
Nóvoa, A. & Magri, L. 2022 Real-time thermoacoustic data assimilation. J. Fluid Mech. 948, A35.10.1017/jfm.2022.653CrossRefGoogle Scholar
Oudheusden, B.W., Scarano, F., Hinsberg, N.P. & Watt, D.W. 2005 Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence. Exp. Fluids 39, 8698.10.1007/s00348-005-0985-5CrossRefGoogle Scholar
Ozawa, Y., Honda, H. & Nonomura, T. 2024 Spatial superresolution based on simultaneous dual PIV measurement with different magnification. Exp. Fluids 65 (4), 42.10.1007/s00348-024-03778-0CrossRefGoogle Scholar
Pan, C., Wang, H. & Wang, J. 2013 Phase identification of quasi-periodic flow measured by particle image velocimetry with a low sampling rate. Meas. Sci. Technol. 24 (5), 055305.10.1088/0957-0233/24/5/055305CrossRefGoogle Scholar
Pant, P. & Farimani, A.B. 2020 Deep learning for efficient reconstruction of high-resolution turbulent DNS data. arXiv:2010.11348.Google Scholar
Saitta, S., Carioni, M., Mukherjee, S., Schönlieb, C.-B. & Redaelli, A. 2024 Implicit neural representations for unsupervised super-resolution and denoising of 4D flow MRI. Comput. Meth. Prog. Bio. 246, 108057.10.1016/j.cmpb.2024.108057CrossRefGoogle ScholarPubMed
Scarano, F. 2012 Tomographic PIV: principles and practice. Meas. Sci. Technol. 24 (1), 012001.10.1088/0957-0233/24/1/012001CrossRefGoogle Scholar
Schneiders, J.F.G., Dwight, R.P. & Scarano, F. 2014 Time-supersampling of 3D-PIV measurements with vortex-in-cell simulation. Exp. Fluids 55 (3), 1692.10.1007/s00348-014-1692-xCrossRefGoogle Scholar
Schröder, A. & Willert, C.E. 2008 Particle image velocimetry: new developments and recent applications.Google Scholar
Takehara, K., Adrian, R.J., Etoh, G.T. & Christensen, K.T. 2000 A Kalman tracker for super-resolution PIV. Exp. Fluids 29 (Suppl 1), S034S041.10.1007/s003480070005CrossRefGoogle Scholar
Turhan, B., Wang, Z. & Gursul, I. 2022 Coherence of unsteady wake of periodically plunging airfoil. J. Fluid Mech. 938, A14.10.1017/jfm.2022.147CrossRefGoogle Scholar
Vamsi Krishna, C., Wang, M., Hemati, M.S. & Luhar, M. 2020 Reconstructing the time evolution of wall-bounded turbulent flows from non-time-resolved PIV measurements. Phys. Rev. Fluids 5 (5), 054604.10.1103/PhysRevFluids.5.054604CrossRefGoogle Scholar
Wang, J.-J., Choi, K.-S., Feng, L.-H., Jukes, T.N. & Whalley, R.D. 2013 Recent developments in DBD plasma flow control. Prog. Aerosp. Sci. 62, 5278.10.1016/j.paerosci.2013.05.003CrossRefGoogle Scholar
Wang, X., Yu, K., Wu, S., Gu, J., Liu, Y., Dong, C., Qiao, Y. & Change Loy, C. 2018 ESRGAN: Enhanced super-resolution generative adversarial networks. In Proceedings of the European conference on computer vision (ECCV) workshops.10.1007/978-3-030-11021-5_5CrossRefGoogle Scholar
Yao, J., Chen, X. & Hussain, F. 2022 Direct numerical simulation of turbulent open channel flows at moderately high Reynolds numbers. J. Fluid Mech. 953, A19.10.1017/jfm.2022.942CrossRefGoogle Scholar
Yasuda, Y., Onishi, R., Hirokawa, Y., Kolomenskiy, D. & Sugiyama, D. 2022 Super-resolution of near-surface temperature utilizing physical quantities for real-time prediction of urban micrometeorology. Build. Environ. 209, 108597.10.1016/j.buildenv.2021.108597CrossRefGoogle Scholar
Yilmaz, T.O. & Rockwell, D. 2012 Flow structure on finite-span wings due to pitch-up motion. J. Fluid Mech. 691, 518545.10.1017/jfm.2011.490CrossRefGoogle Scholar
Yousif, M.Z., Yu, L. & Lim, H.-C. 2021 High-fidelity reconstruction of turbulent flow from spatially limited data using enhanced super-resolution generative adversarial network. Phys. Fluids 33 (12), 125119.10.1063/5.0066077CrossRefGoogle Scholar
Yousif, M.Z., Yu, L. & Lim, H.-C. 2022 Super-resolution reconstruction of turbulent flow fields at various Reynolds numbers based on generative adversarial networks. Phys. Fluids 34 (1), 015130.10.1063/5.0074724CrossRefGoogle Scholar
Yu, H.-T. & Bernal, L.P. 2017 Effects of pivot location and reduced pitch rate on pitching rectangular flat plates. AIAA J. 55 (3), 702718.10.2514/1.J055244CrossRefGoogle Scholar
Yu, L., Yousif, M.Z., Zhang, M., Hoyas, S., Vinuesa, R. & Lim, H.-C. 2022 Three-dimensional ESRGAN for super-resolution reconstruction of turbulent flows with tricubic interpolation-based transfer learning. Phys. Fluids 34 (12), 125126.10.1063/5.0129203CrossRefGoogle Scholar
Zhong, Y., Fukami, K., An, B. & Taira, K. 2022 Machine-learning-based reconstruction of transient vortex-airfoil wake interaction. In AIAA Aviation 2022 Forum, pp. 3244.Google Scholar
Zhu, Y., Wang, J. & Liu, J. 2024 Tip effects on three-dimensional flow structures over low-aspect-ratio plates: mechanisms of spanwise fluid transport. J. Fluid Mech. 983, A35.10.1017/jfm.2024.169CrossRefGoogle Scholar
Zong, H. & Kotsonis, M. 2018 Formation, evolution and scaling of plasma synthetic jets. J. Fluid Mech. 837, 147181.10.1017/jfm.2017.855CrossRefGoogle Scholar
Zong, H., Wu, Y., Li, J., Su, Z. & Liang, H. 2025 Closed-loop supersonic flow control with a high-speed experimental deep reinforcement learning framework. J. Fluid Mech. 1009, A3.10.1017/jfm.2025.160CrossRefGoogle Scholar