Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T04:22:34.166Z Has data issue: false hasContentIssue false

Spatiotemporal measurement of surfactant distribution on gravity–capillary waves

Published online by Cambridge University Press:  20 July 2015

Stephen L. Strickland*
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
Michael Shearer
Affiliation:
Department of Mathematics, North Carolina State University, Raleigh, NC 27695, USA
Karen E. Daniels
Affiliation:
Department of Physics, North Carolina State University, Raleigh, NC 27695, USA
*
Email address for correspondence: slstric2@ncsu.edu

Abstract

Materials adsorbed onto the surface of a fluid – for instance, crude oil, biogenic slicks or industrial/medical surfactants – will move in response to surface waves. Owing to the difficulty of non-invasive measurement of the spatial distribution of a molecular monolayer, little is known about the dynamics that couple the surface waves and the evolving density field. Here, we report measurements of the spatiotemporal dynamics of the density field of an insoluble surfactant driven by gravity–capillary waves in a shallow cylindrical container. Standing Faraday waves and travelling waves generated by the meniscus are superimposed to create a non-trivial surfactant density field. We measure both the height field of the surface using moiré imaging, and the density field of the surfactant via the fluorescence of NBD-tagged phosphatidylcholine, a lipid. Through phase averaging stroboscopically acquired images of the density field, we determine that the surfactant accumulates on the leading edge of the travelling meniscus waves and in the troughs of the standing Faraday waves. We fit the spatiotemporal variations in the two fields using an ansatz consisting of a superposition of Bessel functions, and report measurements of the wavenumbers and energy damping factors associated with the meniscus and Faraday waves, as well as the spatial and temporal phase shifts between them. While these measurements are largely consistent for both types of waves and both fields, it is notable that the damping factors for height and surfactant in the meniscus waves do not agree. This raises the possibility that there is a contribution from longitudinal waves in addition to the gravity–capillary waves.

Type
Papers
Copyright
© 2015 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akers, B. F. 2012 Surfactant influence on water wave packets. Stud. Appl. Maths 129 (1), 91102.CrossRefGoogle Scholar
Bechhoefer, J., Ego, V., Manneville, S. & Johnson, B. 1995 An experimental study of the onset of parametrically pumped surface waves in viscous fluids. J. Fluid Mech. 288, 325350.CrossRefGoogle Scholar
Behroozi, P., Cordray, K., Griffin, W. & Behroozi, F. 2007 The calming effect of oil on water. Am. J. Phys. 75 (5), 407414.CrossRefGoogle Scholar
Benjamin, T. B. & Scott, J. C. 1979 Gravity–capillary waves with edge constraints. J. Fluid Mech. 92, 241267.CrossRefGoogle Scholar
Benjamin, T. B. & Ursell, F. 1954 The stability of the plane free surface of a liquid in vertical periodic motion. Proc. R. Soc. Lond. A 225 (1163), 505515.Google Scholar
Bock, E. J. 1991 On ripple dynamics. V. Linear propagation of cylindrical waves on liquids with and without a surface dilatational viscoelastic response. J. Colloid Interface Sci. 147 (2), 422432.CrossRefGoogle Scholar
Case, K. M. & Parkinson, W. C. 1957 Damping of surface waves in an incompressible liquid. J. Fluid Mech. 2 (02), 172184.CrossRefGoogle Scholar
Chen, P. & Viñals, J. 1999 Amplitude equation and pattern selection in Faraday waves. Phys. Rev. E 60 (1), 559570.CrossRefGoogle ScholarPubMed
Davies, J. T. & Vose, R. W. 1965 On the damping of capillary waves by surface films. Proc. R. Soc. Lond. A 286 (1405), 218234.Google Scholar
Dorrestein, R. 1951 General linearized theory of the effect of surface films on water ripples. Proc. K. Ned. Akad. B-Ph. 54, 250272.Google Scholar
Douady, S. 1990 Experimental study of the Faraday instability. J. Fluid Mech. 221, 383409.CrossRefGoogle Scholar
Douady, S., Fauve, S. & Thual, O. 1989 Oscillatory phase modulation of parametrically forced surface waves. Europhys. Lett. 10 (4), 309315.CrossRefGoogle Scholar
Edwards, W. S. & Fauve, S. 1994 Patterns and quasi-patterns in the Faraday experiment. J. Fluid Mech. 278, 123148.CrossRefGoogle Scholar
Ermakov, S. A. 2003 Resonance damping of gravity–capillary waves on the water surface covered with a surface-active film. Izv. Atmos. Ocean. Phys. 39 (5), 624628.Google Scholar
Fallest, D. W., Lichtenberger, A. M., Fox, C. J. & Daniels, K. E. 2010 Fluorescent visualization of a spreading surfactant. New J. Phys. 12 (7), 073029.CrossRefGoogle Scholar
Faraday, M. 1831 On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces. Phil. Trans. R. Soc. Lond. 121, 299340.Google Scholar
Franklin, B., Brownrigg, W. & Farish, M. 1774 Of the stilling of waves by means of oil. Phil. Trans. R. Soc. Lond. 64, 445460.Google Scholar
Gollub, J. P. & Meyer, C. W. 1983 Symmetry-breaking instabilities on a fluid surface. Physica D 6 (3), 337346.CrossRefGoogle Scholar
Goodrich, F. C. 1961 The mathematical theory of capillarity. II. Proc. R. Soc. Lond. A 260 (1303), 490502.Google Scholar
Henderson, D. M. 1998 Effects of surfactants on Faraday-wave dynamics. J. Fluid Mech. 365, 89107.CrossRefGoogle Scholar
Henderson, D. M. & Miles, J. W. 1994 Surface-wave damping in a circular cylinder with a fixed contact line. J. Fluid Mech. 275, 285299.CrossRefGoogle Scholar
Henderson, D. M. & Segur, H. 2013 The role of dissipation in the evolution of ocean swell. J. Geophys. Res. Oceans 118 (10), 50745091.CrossRefGoogle Scholar
Henderson, D. M., Segur, H. & Carter, J. D. 2010 Experimental evidence of stable wave patterns on deep water. J. Fluid Mech. 658, 247278.CrossRefGoogle Scholar
Hühnerfuss, H., Lange, P. A. & Walter, W. 1985 Relaxation effects in monolayers and their contribution to water wave damping. II. The Marangoni phenomenon and gravity wave attenuation. J. Colloid Interface Sci. 108 (2), 442450.CrossRefGoogle Scholar
Jiang, Q., Chiew, Y. C. & Valentini, J. E. 1993 The study of surface dilational properties of nonionic surfactant solutions by propagation of electrocapillary waves. J. Colloid Interface Sci. 155 (1), 815.CrossRefGoogle Scholar
Kharif, C. & Touboul, J. 2010 Under which conditions the Benjamin–Feir instability may spawn an extreme wave event: a fully nonlinear approach. Eur. Phys. J. 185 (1), 159168.Google Scholar
Kumar, S. & Matar, O. K. 2002 Parametrically driven surface waves in surfactant-covered liquids. Proc. R. Soc. Lond. A 458 (2027), 28152828.CrossRefGoogle Scholar
Kumar, S. & Matar, O. K. 2004 On the Faraday instability in a surfactant-covered liquid. Phys. Fluids 16 (1), 3946.CrossRefGoogle Scholar
Lamb, H. 1945 Hydrodynamics, 6th edn, pp. 363366. Dover; Article 227–228.Google Scholar
Lange, P. A. & Hühnerfuss, H. 1984 Horizontal surface tension gradients induced in monolayers by gravity water wave action. J. Phys. Oceanogr. 14 (10), 16201628.2.0.CO;2>CrossRefGoogle Scholar
Lange, P. A. & Hühnerfuss, H. 1986 Use of an electrical surface potential probe for the measurement of capillary and gravity water waves. Rev. Sci. Instrum. 57 (5), 926932.CrossRefGoogle Scholar
Levich, V. 1941 The damping of waves by surface-active substances I. Acta Physicochim. URS 14 (3), 307320.Google Scholar
Lucassen, J. 1968a Longitudinal capillary waves. Part 1. Theory. Trans. Faraday Soc. 64, 22212229.CrossRefGoogle Scholar
Lucassen, J. 1968b Longitudinal capillary waves. Part 2. Experiments. Trans. Faraday Soc. 64, 22302235.CrossRefGoogle Scholar
Lucassen-Reynders, E. H. 1987 Relaxation effects in monolayers and their contribution to water wave damping: a comment. J. Colloid Interface Sci. 117 (2), 589590.CrossRefGoogle Scholar
Lucassen-Reynders, E. H. & Lucassen, J. 1970 Properties of capillary waves. Adv. Colloid Interface. 2 (4), 347395.CrossRefGoogle Scholar
Martín, E. & Vega, J. M. 2006 The effect of surface contamination on the drift instability of standing Faraday waves. J. Fluid Mech. 546, 203225.CrossRefGoogle Scholar
Matar, O. K., Kumar, S. & Craster, R. V. 2004 Nonlinear parametrically excited surface waves in surfactant-covered thin liquid films. J. Fluid Mech. 520, 243265.CrossRefGoogle Scholar
Miles, J. W. 1967 Surface-wave damping in closed basins. Proc. R. Soc. Lond. A 297 (1451), 459475.Google Scholar
Miyano, K., Abraham, B. M., Ting, L. & Wasan, D. T. 1983 Longitudinal surface waves for the study of dynamic properties of surfactant systems. I. Instrumentation. J. Colloid Interface Sci. 92 (2), 297302.CrossRefGoogle Scholar
Picard, C. & Davoust, L. 2006 Dilational rheology of an airwater interface functionalized by biomolecules: the role of surface diffusion. Rheol. Acta 45 (4), 497504.CrossRefGoogle Scholar
Reynolds, O. 1880 On the effect of oil in destroying waves on the surface of water. Brit. Assoc. Rept. Papers 50, 489490.Google Scholar
Sanlı, C., Lohse, D. & van der Meer, D. 2014 From antinode clusters to node clusters: the concentration-dependent transition of floaters on a standing Faraday wave. Phys. Rev. E 89 (5), 053011.CrossRefGoogle ScholarPubMed
Saylor, J. R., Szeri, A. J. & Foulks, G. P. 2000 Measurement of surfactant properties using a circular capillary wave field. Exp. Fluids 29 (6), 509518.CrossRefGoogle Scholar
Segur, H., Henderson, D., Carter, J., Hammack, J., Li, C. M., Pheiff, D. & Socha, K. 2005 Stabilizing the Benjamin–Feir instability. J. Fluid Mech. 539, 229.CrossRefGoogle Scholar
Shrive, J. D. A., Brennan, J. D., Brown, R. S. & Krull, U. J. 1995 Optimization of the self-quenching response of nitrobenzoxadiazole dipalmitoylphosphatidylethanolamine in phospholipid membranes for biosensor development. Appl. Spectrosc. 49 (3), 304.CrossRefGoogle Scholar
Strickland, S. L., Hin, M., Sayanagi, M. R., Gaebler, C., Daniels, K. E. & Levy, R. 2014 Self-healing dynamics of surfactant coatings on thin viscous films. Phys. Fluids 26 (4), 042109.CrossRefGoogle Scholar
Swanson, E. R., Strickland, S. L., Shearer, M. & Daniels, K. E. 2014 Surfactant spreading on a thin liquid film: reconciling models and experiments. J. Eng. Maths (in press); doi:10.1007/s10665-014-9735-0.Google Scholar
Thomson, W. 1871 Hydrokinetic solutions and observations. Phil. Mag. 42, 368.CrossRefGoogle Scholar
Touboul, J. & Kharif, C. 2010 Nonlinear evolution of the modulational instability under weak forcing and damping. Nat. Hazards Earth Syst. 10 (12), 25892597.CrossRefGoogle Scholar
Tsukanova, V., Grainger, D. W. & Salesse, C. 2002 Monolayer behavior of NBD-labeled phospholipids at the air/water interface. Langmuir 18 (14), 55395550.CrossRefGoogle Scholar
Ubal, S., Giavedoni, M. D. & Saita, F. A. 2005 Elastic effects of an insoluble surfactant on the onset of two-dimensional Faraday waves: a numerical experiment. J. Fluid Mech. 524, 305329.CrossRefGoogle Scholar
Vogel, M. J., Hirsa, A. H., Kelley, J. S. & Korenowski, G. M. 2001 Simultaneous measurement of free-surface velocity and surfactant concentration via a common laser probe. Rev. Sci. Instrum. 72 (2), 15021509.CrossRefGoogle Scholar

Strickland et al. supplementary movie

The Movie1 videos show the spatiotemporal dynamics of the surface height (3-d mesh) and the surfactant density (coloration) fields for the combined Faraday and meniscus waves system. This video, collected at 80 frames per second, has been slowed by 53x. Details of this visualization method can be found in the caption to figure 6.

Download Strickland et al. supplementary movie(Video)
Video 7.4 MB

Strickland et al. supplementary movie

The Movie1 videos show the spatiotemporal dynamics of the surface height (3-d mesh) and the surfactant density (coloration) fields for the combined Faraday and meniscus waves system. This video, collected at 80 frames per second, has been slowed by 53x. Details of this visualization method can be found in the caption to figure 6.

Download Strickland et al. supplementary movie(Video)
Video 2.9 MB

Strickland et al. supplementary movie

The Movie2 videos show the spatiotemporal dynamics of the surface height (3-d mesh) and the surfactant density (coloration) fields for the meniscus wave component of the dynamics. This video, collected at 80 frames per second, has been slowed by 53x. Details of this visualization method can be found in the caption to figure 7.

Download Strickland et al. supplementary movie(Video)
Video 7 MB

Strickland et al. supplementary movie

The Movie2 videos show the spatiotemporal dynamics of the surface height (3-d mesh) and the surfactant density (coloration) fields for the meniscus wave component of the dynamics. This video, collected at 80 frames per second, has been slowed by 53x. Details of this visualization method can be found in the caption to figure 7.

Download Strickland et al. supplementary movie(Video)
Video 2.6 MB

Strickland et al. supplementary movie

The Movie3 videos show the spatiotemporal dynamics of the surface height (3-d mesh) and the surfactant density (coloration) fields for the Faraday wave component of the dynamics. This video, collected at 80 frames per second, has been slowed by 53x. Details of this visualization method can be found in the caption to figure 8.

Download Strickland et al. supplementary movie(Video)
Video 7.1 MB

Strickland et al. supplementary movie

The Movie3 videos show the spatiotemporal dynamics of the surface height (3-d mesh) and the surfactant density (coloration) fields for the Faraday wave component of the dynamics. This video, collected at 80 frames per second, has been slowed by 53x. Details of this visualization method can be found in the caption to figure 8.

Download Strickland et al. supplementary movie(Video)
Video 2.4 MB