Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T05:03:18.007Z Has data issue: false hasContentIssue false

Sound wave propagation in rarefied molecular gases

Published online by Cambridge University Press:  20 October 2023

Shaokang Li
Affiliation:
Institute of Multiscale Thermofluids, School of Engineering, The University of Edinburgh, Edinburgh EH9 3FB, UK
Wei Su
Affiliation:
Division of Emerging Interdisciplinary Areas, The Hong Kong University of Science and Technology, Hong Kong, PR China Department of Mathematics, The Hong Kong University of Science and Technology, Hong Kong, PR China
Yonghao Zhang*
Affiliation:
Centre for Interdisciplinary Research in Fluids, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, PR China
*
Email address for correspondence: yonghao.zhang@imech.ac.cn

Abstract

Sound wave propagation in rarefied flows of molecular gases confined in micro-channels is investigated numerically. We first validate the employed kinetic model against the experimental results and then systematically study the gas damping and surface force on the transducer as well as the resonance/anti-resonance in confined space. To quantify the impact of the finite relaxation rates of the translational and internal energies on wave propagation, we examine the roles of bulk viscosity and thermal conductivity in depth over a wide range of rarefactions and oscillation frequencies. It is found that the bulk viscosity only exerts influence on the pressure amplitude and its resonance frequency in the slip regime in high oscillations. In addition, the internal degree of freedom is frozen when the bulk viscosity of a molecular gas is large, resulting in the pressure amplitude of sound waves in the molecular gas being the same as in a monatomic gas. Meanwhile, the thermal conductivity has a limited influence on the pressure amplitude in all the simulated flows. In the case of the thermoacoustic wave, we prove that the Onsager–Casimir reciprocal relation also holds for molecular gases, i.e. the pressure deviation induced by the temperature variation is equal to the heat flux induced by the plate oscillation. Our findings enable an enhanced understanding of sound wave propagation in molecular gases, which may facilitate the design of nano-/micro-scale devices.

Type
JFM Papers
Copyright
© The Author(s), 2023. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arima, T., Ruggeri, T. & Sugiyama, M. 2017 Rational extended thermodynamics of a rarefied polyatomic gas with molecular relaxation processes. Phys. Rev. E 96 (4), 042143.CrossRefGoogle ScholarPubMed
Bird, G.A. 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows. Clarendon Press.Google Scholar
Bisi, M. & Lorenzani, S. 2016 High-frequency sound wave propagation in binary gas mixtures flowing through microchannels. Phys. Fluids 28 (5), 052003.CrossRefGoogle Scholar
Boom, B.A., Bertolini, A., Hennes, E. & van den Brand, J.F. 2021 Gas damping in capacitive MEMS transducers in the free molecular flow regime. Sensors 21 (7), 2566.CrossRefGoogle ScholarPubMed
Borgnakke, C. & Larsen, P.S. 1975 Statistical collision model for Monte Carlo simulation of polyatomic gas mixture. J. Comput. Phys. 18 (4), 405420.CrossRefGoogle Scholar
Casimir, H.B.G. 1945 On Onsager's principle of microscopic reversibility. Rev. Mod. Phys. 17 (2–3), 343.CrossRefGoogle Scholar
Chigullapalli, S., Weaver, A. & Alexeenko, A. 2012 Nonlinear effects in squeeze-film gas damping on microbeams. J. Micromech. Microengng 22 (6), 065010.CrossRefGoogle Scholar
Clark, J.R., Hsu, W.T., Abdelmoneum, M.A. & Nguyen, C.C. 2005 High-Q UHF micromechanical radial-contour mode disk resonators. J. Microelectromech. Syst. 14 (6), 12981310.CrossRefGoogle Scholar
Cox, E.A., Mortell, M.P. & Reck, S. 2001 Nonlinear standing and resonantly forced oscillations in a tube with slowly changing length. SIAM J. Appl. Maths 62 (3), 965989.CrossRefGoogle Scholar
Cramer, M.S. 2012 Numerical estimates for the bulk viscosity of ideal gases. Phys. Fluids 24 (6), 066102.CrossRefGoogle Scholar
Dain, Y. & Lueptow, R.M. 2001 a Acoustic attenuation in a three-gas mixture: results. J. Acoust. Soc. Am. 110 (6), 29742979.CrossRefGoogle Scholar
Dain, Y. & Lueptow, R.M. 2001 b Acoustic attenuation in three-component gas mixtures—theory. J. Acoust. Soc. Am. 109 (5), 19551964.CrossRefGoogle ScholarPubMed
Desvillettes, L. & Lorenzani, S. 2012 Sound wave resonances in micro-electro-mechanical systems devices vibrating at high frequencies according to the kinetic theory of gases. Phys. Fluids 24 (9), 092001.CrossRefGoogle Scholar
Ejakov, S.G., Phillips, S., Dain, Y., Lueptow, R.M. & Visser, J.H. 2003 Acoustic attenuation in gas mixtures with nitrogen: experimental data and calculations. J. Acoust. Soc. Am. 113 (4), 18711879.CrossRefGoogle ScholarPubMed
Emerson, D.R., Gu, X.-J., Stefanov, S.K., Yuhong, S. & Barber, R.W. 2007 Nonplanar oscillatory shear flow: from the continuum to the free-molecular regime. Phys. Fluids 19 (10), 107105.CrossRefGoogle Scholar
Eucken, A. 1913 Über das Wärmeleitvermögen, die spezifische Wärme und die innere Reibung der Gase. Phys. Z. 14 (8), 324332.Google Scholar
Frangi, A., Frezzotti, A. & Lorenzani, S. 2007 On the application of the BGK kinetic model to the analysis of gas-structure interactions in MEMS. Comput. Struct. 85 (11–14), 810817.CrossRefGoogle Scholar
Garcia, R.D.M. & Siewert, C.E. 2005 The linearized Boltzmann equation: sound-wave propagation in a rarefied gas. Z. Angew. Math. Phys. 57 (1), 94122.CrossRefGoogle Scholar
Gorji, M.H. & Jenny, P. 2013 A Fokker–Planck based kinetic model for diatomic rarefied gas flows. Phys. Fluids 25 (6), 062002.CrossRefGoogle Scholar
Greenspan, M. 1959 Rotational relaxation in nitrogen, oxygen, and air. J. Acoust. Soc. Am. 31 (2), 155160.CrossRefGoogle Scholar
Hadjiconstantinou, N.G. 2002 Sound wave propagation in transition-regime micro- and nanochannels. Phys. Fluids 14 (2), 802809.CrossRefGoogle Scholar
Holway, J. & Lowell, H. 1966 New statistical models for kinetic theory: methods of construction. Phys. Fluids 9 (9), 16581673.CrossRefGoogle Scholar
Ivanov, M.S. & Rogasinskii, S.V. 1991 Theoretical analysis of traditional and modern schemes of the DSMC method. In Proceedings of the 17th Symposium on Rarefied Gas Dynamics (ed. A.E. Beylich), pp. 629–642. VCH.Google Scholar
Jaeger, F., Matar, O.K. & Müller, E.A. 2018 Bulk viscosity of molecular fluids. J. Chem. Phys. 148 (17), 174504.CrossRefGoogle ScholarPubMed
Kalempa, D. & Sharipov, F. 2009 Sound propagation through a rarefied gas confined between source and receptor at arbitrary Knudsen number and sound frequency. Phys. Fluids 21 (10), 103601.CrossRefGoogle Scholar
Kalempa, D. & Sharipov, F. 2012 Sound propagation through a rarefied gas. Influence of the gas–surface interaction. Intl J. Heat Fluid Flow 38, 190199.CrossRefGoogle Scholar
Kalempa, D. & Sharipov, F. 2014 Numerical modelling of thermoacoustic waves in a rarefied gas confined between coaxial cylinders. Vacuum 109, 326332.CrossRefGoogle Scholar
Kosuge, S. & Aoki, K. 2018 Shock-wave structure for a polyatomic gas with large bulk viscosity. Phys. Rev. Fluids 3 (2), 023401.CrossRefGoogle Scholar
Kremer, G.M., Kunova, O.V., Kustova, E.V. & Oblapenko, G.P. 2018 The influence of vibrational state-resolved transport coefficients on the wave propagation in diatomic gases. Physica A 490, 92113.CrossRefGoogle Scholar
Kustova, E., Mekhonoshina, M., Bechina, A., Lagutin, S. & Voroshilova, Y. 2023 Continuum models for bulk viscosity and relaxation in polyatomic gases. Fluids 8 (2), 48.CrossRefGoogle Scholar
Li, Q., Zeng, J., Huang, Z. & Wu, L. 2023 Kinetic modelling of rarefied gas flows with radiation. J. Fluid Mech. 965, A13.CrossRefGoogle Scholar
Li, Q., Zeng, J., Su, W. & Wu, L. 2021 Uncertainty quantification in rarefied dynamics of molecular gas: rate effect of thermal relaxation. J. Fluid Mech. 917, A58.CrossRefGoogle Scholar
Mandelshtam, L.I. & Leontovich, M.A. 1937 A theory of sound absorption in liquids. J. Exp. Theor. Phys. 7 (3), 438449.Google Scholar
Mason, E.A. & Monchick, L. 1962 Heat conductivity of polyatomic and polar gases. J. Chem. Phys. 36 (6), 16221639.CrossRefGoogle Scholar
McCormack, F.J. 1968 Kinetic equations for polyatomic gases: the 17-moment approximation. Phys. Fluids 11 (12), 25332543.CrossRefGoogle Scholar
Morse, T.F. 1964 Kinetic model for gases with internal degrees of freedom. Phys. Fluids 7 (2), 159169.CrossRefGoogle Scholar
Onsager, L. 1931 a Reciprocal relations in irreversible processes. I. Phys. Rev. 37 (4), 405.CrossRefGoogle Scholar
Onsager, L. 1931 b Reciprocal relations in irreversible processes. II. Phys. Rev. 38 (12), 2265.CrossRefGoogle Scholar
Park, J.H., Bahukudumbi, P. & Beskok, A. 2004 Rarefaction effects on shear driven oscillatory gas flows: a direct simulation Monte Carlo study in the entire Knudsen regime. Phys. Fluids 16 (2), 317330.CrossRefGoogle Scholar
Rahimi, B. & Struchtrup, H. 2014 Capturing non-equilibrium phenomena in rarefied polyatomic gases: a high-order macroscopic model. Phys. Fluids 26 (5), 052001.CrossRefGoogle Scholar
Roohi, E., Stefanov, S., Shoja-Sani, A. & Ejraei, H. 2018 A generalized form of the Bernoulli trial collision scheme in DSMC: derivation and evaluation. J. Comput. Phys. 354, 476492.CrossRefGoogle Scholar
Rykov, V.A. 1975 A model kinetic equation for a gas with rotational degrees of freedom. Fluid Dyn. 10 (6), 959966.CrossRefGoogle Scholar
Sharipov, F. 2006 Onsager-Casimir reciprocal relations based on the Boltzmann equation and gas-surface interaction: single gas. Phys. Rev. E 73 (2), 026110.CrossRefGoogle ScholarPubMed
Sharipov, F. & Kalempa, D. 2008 Numerical modeling of the sound propagation through a rarefied gas in a semi-infinite space on the basis of linearized kinetic equation. J. Acoust. Soc. Am. 124 (4), 19932001.CrossRefGoogle Scholar
Sharipov, F., Marques, W. Jr. & Kremer, G.M. 2002 Free molecular sound propagation. J. Acoust. Soc. Am. 112 (2), 395401.CrossRefGoogle ScholarPubMed
Struchtrup, H. 2012 Resonance in rarefied gases. Contin. Mech. Thermodyn. 24, 361376.CrossRefGoogle Scholar
Su, W., Li, Q., Zhang, Y. & Wu, L. 2022 Temperature jump and Knudsen layer in rarefied molecular gas. Phys. Fluids 34 (3), 032010.CrossRefGoogle Scholar
Su, W., Wang, P., Zhang, Y. & Wu, L. 2020 Implicit discontinuous Galerkin method for the Boltzmann equation. J. Sci. Comput. 82, 135.CrossRefGoogle Scholar
Su, W., Zhang, Y. & Wu, L. 2021 Multiscale simulation of molecular gas flows by the general synthetic iterative scheme. Comput. Meth. Appl. Mech. Engng 373, 113548.CrossRefGoogle Scholar
Tang, H., Cheng, P. & Xu, K. 2001 Numerical simulations of resonant oscillations in a tube. Numer. Heat Transfer A 40 (1), 3754.CrossRefGoogle Scholar
Tisza, L. 1942 Supersonic absorption and Stokes’ viscosity relation. Phys. Rev. 61 (7–8), 531.CrossRefGoogle Scholar
Wagner, W. 1992 A convergence proof for Bird's direct simulation Monte Carlo method for the Boltzmann equation. J. Stat. Phys. 66, 10111044.CrossRefGoogle Scholar
Wang, P., Zhu, L., Su, W., Wu, L. & Zhang, Y. 2018 Nonlinear oscillatory rarefied gas flow inside a rectangular cavity. Phys. Rev. E 97 (4), 043103.CrossRefGoogle ScholarPubMed
Wang, R.J. & Xu, K. 2012 The study of sound wave propagation in rarefied gases using unified gas-kinetic scheme. Acta Mechanica Sin. 28 (4), 10221029.CrossRefGoogle Scholar
Wang, Y., Ubachs, W. & Van De Water, W. 2019 Bulk viscosity of CO$_2$ from Rayleigh-Brillouin light scattering spectroscopy at 532 nm. J. Chem. Phys. 150 (15), 154502.CrossRefGoogle ScholarPubMed
Wang, Z., Yan, H., Li, Q. & Xu, K. 2017 Unified gas-kinetic scheme for diatomic molecular flow with translational, rotational, and vibrational modes. J. Comput. Phys. 350, 237259.CrossRefGoogle Scholar
Wang-Chang, C.S. & Uhlenbeck, G.E. 1951 Transport phenomena in polyatomic gases. Research Rep. CM-681. University of Michigan College of Engineering.Google Scholar
Wu, L. 2016 Sound propagation through a rarefied gas in rectangular channels. Phys. Rev. E 94 (5), 053110.CrossRefGoogle ScholarPubMed
Wu, L., Li, Q., Liu, H. & Ubachs, W. 2020 Extraction of the translational Eucken factor from light scattering by molecular gas. J. Fluid Mech. 901, A23.CrossRefGoogle Scholar
Wu, L., Reese, J.M. & Zhang, Y. 2014 Oscillatory rarefied gas flow inside rectangular cavities. J. Fluid Mech. 748, 350367.CrossRefGoogle Scholar
Wu, L., White, C., Scanlon, T.J., Reese, J.M. & Zhang, Y. 2015 A kinetic model of the Boltzmann equation for non-vibrating polyatomic gases. J. Fluid Mech. 763, 2450.CrossRefGoogle Scholar
Yang, M. & Sheng, P. 2017 Sound absorption structures: from porous media to acoustic metamaterials. Annu. Rev. Mater. Res. 47, 83114.CrossRefGoogle Scholar