Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T14:52:31.512Z Has data issue: false hasContentIssue false

Sound generation mechanism of compressible vortex reconnection

Published online by Cambridge University Press:  29 December 2021

Hamid Daryan*
Affiliation:
Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
Fazle Hussain
Affiliation:
Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
Jean-Pierre Hickey
Affiliation:
Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
*
Email address for correspondence: h42moham@uwaterloo.ca

Abstract

We study the sound generation mechanism of initially subsonic viscous vortex reconnection at vortex Reynolds number $Re~(\equiv \text {circulation}/\text {kinematic viscosity})=1500$ through decomposition of Lighthill's acoustic source term. The Laplacian of the kinetic energy, flexion product, enstrophy and deviation from the isentropic condition provide the dominant contributions to the acoustic source term. The overall (all time) extrema of the total source term and its dominant hydrodynamic components scale linearly with the reference Mach number $M_o$; the deviation from the isentropic condition shows a quadratic scaling. The significant sound arising from the flexion product occurs due to the coiling and uncoiling of the twisted vortex filaments wrapping around the bridges, when a rapid strain is induced on the filaments by the repulsion of the bridges. The spatial distributions of the various acoustic source terms reveal the importance of mutual cancellations among most of the terms; this also highlights the importance of symmetry breaking in the sound generation during reconnection. Compressibility acts to delay the start of the sequence of reconnection events, as long as shocklets, if formed, are sufficiently weak to not affect the reconnection. The delayed onset has direct ramifications for the sound generation by enhancing the velocity of the entrained jet between the vortices and increasing the spatial gradients of the acoustic source terms. Consistent with the near-field pressure, the overall maximum instantaneous sound pressure level in the far field has a quadratic dependence on $M_o$. Thus, reconnection becomes an even more dominant sound-generating event at higher $M_o$.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adachi, S., Ishh, K. & Kambe, T. 1997 Vortex sound associated with vortexline reconnection in oblique collision of two vortex rings. Z. Angew. Math. Mech. 77 (9), 716719.CrossRefGoogle Scholar
Bastin, F., Lafon, P. & Candel, S. 1997 Computation of jet mixing noise due to coherent structures: the plane jet case. J. Fluid Mech. 335, 261304.CrossRefGoogle Scholar
Bermejo-Moreno, I., Bodart, J., Larsson, J., Barney, B.M., Nichols, J.W. & Jones, S. 2013 Solving the compressible Navier–Stokes equations on up to 1.97 million cores and 4.1 trillion grid points. In SC’13: Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis, pp. 1–10. IEEE.CrossRefGoogle Scholar
Boratav, O.N., Pelz, R.B. & Zabusky, N.J. 1992 Reconnection in orthogonally interacting vortex tubes: direct numerical simulations and quantifications. Phys. Fluids 4 (3), 581605.CrossRefGoogle Scholar
Cabana, M., Fortuné, V. & Jordan, P. 2008 Identifying the radiating core of Lighthill's source term. Theor. Comput. Fluid Dyn. 22 (2), 87106.CrossRefGoogle Scholar
Coiffet, F., Jordan, P., Delville, J., Gervais, Y. & Ricaud, F. 2006 Coherent structures in subsonic jets: a quasi-irrotational source mechanism? Intl J. Aeroacoust. 5 (1), 6789.CrossRefGoogle Scholar
Colonius, T., Lele, S.K. & Moin, P. 1997 Sound generation in a mixing layer. J. Fluid Mech. 330, 375409.CrossRefGoogle Scholar
Crighton, D.G. 1981 Acoustics as a branch of fluid mechanics. J. Fluid Mech. 106, 261298.CrossRefGoogle Scholar
Crow, S.C. 1970 Stability theory for a pair of trailing vortices. AIAA J. 8 (12), 21722179.CrossRefGoogle Scholar
Daryan, H.M.M., Hussain, F. & Hickey, J.-P. 2019 Aeroacoustic noise generation in compressible vortex reconnection. In 11th International Symposium on Turbulence and Shear Flow Phenomena, TSFP 2019.Google Scholar
Daryan, H., Hussain, F. & Hickey, J.-P. 2020 Aeroacoustic noise generation due to vortex reconnection. Phys. Rev. Fluids 5 (6), 062702.CrossRefGoogle Scholar
Ducros, F., Laporte, F., Soulères, T., Guinot, V., Moinat, P. & Caruelle, B. 2000 High-order fluxes for conservative skew-symmetric-like schemes in structured meshes: application to compressible flows. J. Comput. Phys. 161 (1), 114139.CrossRefGoogle Scholar
Eldredge, J.D. 2007 The dynamics and acoustics of viscous two-dimensional leapfrogging vortices. J. Sound Vib. 301 (1–2), 7492.CrossRefGoogle Scholar
Golanski, F., Fortuné, V. & Lamballais, E. 2005 Noise radiated by a non-isothermal, temporal mixing layer. Theor. Comput. Fluid Dyn. 19 (6), 391416.CrossRefGoogle Scholar
Guj, G., Carley, M., Camussi, R. & Ragni, A. 2003 Acoustic identification of coherent structures in a turbulent jet. J. Sound Vib. 259 (5), 10371065.CrossRefGoogle Scholar
Hamman, C.W., Klewicki, J.C. & Kirby, R.M. 2008 On the lamb vector divergence in Navier–Stokes flows. J. Fluid Mech. 610, 261284.CrossRefGoogle Scholar
Hickey, J.-P., Hussain, F. & Wu, X. 2016 Compressibility effects on the structural evolution of transitional high-speed planar wakes. J. Fluid Mech. 796, 539.CrossRefGoogle Scholar
Hussain, A.K.M.F. 1983 Coherent structures–reality and myth. Phys. Fluids 26 (10), 28162850.CrossRefGoogle Scholar
Hussain, A.K.M.F. & Hasan, M.A.Z. 1985 Turbulence suppression in free turbulent shear flows under controlled excitation. Part 2. Jet-noise reduction. J. Fluid Mech. 150, 159168.CrossRefGoogle Scholar
Hussain, A.K.M.F. & Zaman, K.B.M.Q. 1981 The preferred mode of the axisymmetric jet. J. Fluid Mech. 110, 3971.CrossRefGoogle Scholar
Hussain, F. & Duraisamy, K. 2011 Mechanics of viscous vortex reconnection. Phys. Fluids 23 (2), 021701.CrossRefGoogle Scholar
Ishii, K., Adachi, S. & Kambe, T. 1998 Sound generation in oblique collision of two vortex rings. J. Phys. Soc. Japan 67 (7), 23062314.CrossRefGoogle Scholar
Kambe, T., Minota, T. & Takaoka, M. 1993 Oblique collision of two vortex rings and its acoustic emission. Phys. Rev. E 48 (3), 1866.CrossRefGoogle ScholarPubMed
Kerr, R., Virk, D. & Hussain, F. 1989 Effects of incompressible and compressible vortex reconnection. Topol. Fluid Mech. 500514.Google Scholar
Kibens, V. 1980 Discrete noise spectrum generated by acoustically excited jet. AIAA J. 18 (4), 434441.CrossRefGoogle Scholar
Kida, S. & Takaoka, M. 1987 Bridging in vortex reconnection. Phys. Fluids 30 (10), 29112914.CrossRefGoogle Scholar
Kida, S. & Takaoka, M. 1994 Vortex reconnection. Annu. Rev. Fluid Mech. 26 (1), 169177.CrossRefGoogle Scholar
Kida, S., Takaoka, M. & Hussain, F. 1991 Collision of two vortex rings. J. Fluid Mech. 230, 583646.CrossRefGoogle Scholar
Larsson, J., Bermejo-Moreno, I. & Lele, S.K. 2013 Reynolds-and Mach-number effects in canonical shock–turbulence interaction. J. Fluid Mech. 717, 293321.CrossRefGoogle Scholar
Laufer, J. & Yen, T.-C. 1983 Noise generation by a low-Mach-number jet. J. Fluid Mech. 134, 131.CrossRefGoogle Scholar
Lighthill, M.J. 1952 On sound generated aerodynamically I. General theory. Proc. R. Soc. Lond. A 211 (1107), 564587.Google Scholar
Mancinelli, M., Pagliaroli, T., Di Marco, A., Camussi, R. & Castelain, T. 2017 Wavelet decomposition of hydrodynamic and acoustic pressures in the near field of the jet. J. Fluid Mech. 813, 716749.CrossRefGoogle Scholar
Melander, M.V. & Hussain, F. 1988 Cut-and-connect of two antiparallel vortex tubes. In Studying Turbulence Using Numerical Simulation Databases, Proceedings of the 1988 Summer Program (Stanford University, Stanford, CA, 1988), pp. 257–286.Google Scholar
Melander, M.V. & Hussain, F. 1994 Core dynamics on a vortex column. Fluid Dyn. Res. 13 (1), 137.CrossRefGoogle Scholar
Möhring, W. 1978 On vortex sound at low mach number. J. Fluid Mech. 85 (4), 685691.CrossRefGoogle Scholar
Nakashima, Y. 2008 Sound generation by head-on and oblique collisions of two vortex rings. Phys. Fluids 20 (5), 056102.CrossRefGoogle Scholar
Pantano, C. & Sarkar, S. 2002 A study of compressibility effects in the high-speed turbulent shear layer using direct simulation. J. Fluid Mech. 451, 329371.CrossRefGoogle Scholar
Peng, N. & Yang, Y. 2018 Effects of the Mach number on the evolution of vortex-surface fields in compressible Taylor–Green flows. Phys. Rev. Fluids 3 (1), 013401.CrossRefGoogle Scholar
Powell, A. 1964 Theory of vortex sound. J. Acoust. Soc. Am. 36 (1), 177195.CrossRefGoogle Scholar
Proment, D. & Krstulovic, G. 2020 Matching theory to characterize sound emission during vortex reconnection in quantum fluids. Phys. Rev. Fluids 5, 104701.CrossRefGoogle Scholar
Scheidegger, T.E. 1998 On compressibility effects in two-and three-dimensional flows: vortex dipoles and reconnection. PhD thesis, Rutgres University, New Brunswick, NJ.Google Scholar
Shivamoggi, B.K. 2006 Vortex stretching and reconnection in a compressible fluid. Eur. Phys. J. (B) 49 (4), 483490.CrossRefGoogle Scholar
Siggia, E.D. 1985 Collapse and amplification of a vortex filament. Phys. Fluids 28 (3), 794805.CrossRefGoogle Scholar
Trettel, A. & Larsson, J. 2016 Mean velocity scaling for compressible wall turbulence with heat transfer. Phys. Fluids 28 (2), 026102.CrossRefGoogle Scholar
Villois, A., Proment, D. & Krstulovic, G. 2020 Irreversible dynamics of vortex reconnections in quantum fluids. Phys. Rev. Lett. 125, 164501.CrossRefGoogle ScholarPubMed
Virk, D. & Hussain, F. 1993 Influence of initial conditions on compressible vorticity dynamics. Theor. Comput. Fluid Dyn. 5 (6), 309334.CrossRefGoogle Scholar
Virk, D., Hussain, F. & Kerr, R.M. 1995 Compressible vortex reconnection. J. Fluid Mech. 304, 4786.CrossRefGoogle Scholar
Williams, J.E.F. & Kempton, A.J. 1978 The noise from the large-scale structure of a jet. J. Fluid Mech. 84 (4), 673694.CrossRefGoogle Scholar
Yang, D., Guzmán-Iñigo, J. & Morgans, A.S. 2020 Sound generation by entropy perturbations passing through a sudden flow expansion. J. Fluid Mech. 905, R2.CrossRefGoogle Scholar
Yao, J. & Hussain, F. 2020 A physical model of turbulence cascade via vortex reconnection sequence and avalanche. J. Fluid Mech. 883, A51.CrossRefGoogle Scholar
Zaman, K.B.M.Q. 1985 Far-field noise of a subsonic jet under controlled excitation. J. Fluid Mech. 152, 83111.CrossRefGoogle Scholar
Zaman, K.B.M.Q. & Hussain, A.K.M.F. 1981 Turbulence suppression in free shear flows by controlled excitation. J. Fluid Mech. 103, 133159.CrossRefGoogle Scholar