Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-12T15:17:57.972Z Has data issue: false hasContentIssue false

Simultaneous measurements of deforming Hinze-scale bubbles with surrounding turbulence

Published online by Cambridge University Press:  11 January 2021

Ashik Ullah Mohammad Masuk
Affiliation:
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD21218, USA
Ashwanth K. R. Salibindla
Affiliation:
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD21218, USA
Rui Ni*
Affiliation:
Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD21218, USA
*
Email address for correspondence: rui.ni@jhu.edu

Abstract

We experimentally investigate the breakup mechanisms and probability of Hinze-scale bubbles in turbulence. The Hinze scale is defined as the critical bubble size based on the critical mean Weber number, across which the bubble breakup probability was believed to have an abrupt transition from being dominated by turbulence stresses to being suppressed completely by the surface tension. In this work, to quantify the breakup probability of bubbles with sizes close to the Hinze scale and to examine different breakup mechanisms, both bubbles and their surrounding tracer particles were simultaneously tracked. From the experimental results, two Weber numbers, one calculated from the slip velocity between the two phases and the other acquired from local velocity gradients, are separated and fitted with models that can be linked back to turbulence characteristics. Moreover, we also provide an empirical model to link bubble deformation to the two Weber numbers by extending the relationship obtained from potential flow theory. The proposed relationship between bubble aspect ratio and the Weber numbers seems to work consistently well for a range of bubble sizes. Furthermore, the time traces of bubble aspect ratio and the two Weber numbers are connected using the linear forced oscillator model. Finally, having access to the distributions of these two Weber numbers provides a unique way to extract the breakup probability of bubbles with sizes close to the Hinze scale.

Type
JFM Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.CrossRefGoogle Scholar
Batchelor, G. K. 1953 The Theory of Homogeneous Turbulence. Cambridge University Press.Google Scholar
Clay, P. H. 1940 The mechanism of emulsion formation in turbulent flow. Proc. R. Acad. Sci. Amsterdam 43, 852865.Google Scholar
Dabiri, S., Lu, J. & Tryggvason, G. 2013 Transition between regimes of a vertical channel bubbly upflow due to bubble deformability. Phys. Fluids 25 (10), 102110.CrossRefGoogle Scholar
De Silva, I. P. D. & Fernando, H. J. S. 1994 Oscillating grids as a source of nearly isotropic turbulence. Phys. Fluids 6 (7), 24552464.CrossRefGoogle Scholar
Deane, G. B. & Stokes, M. D. 2002 Scale dependence of bubble creation mechanisms in breaking waves. Nature 418 (6900), 839.CrossRefGoogle ScholarPubMed
Dodd, M. S. & Ferrante, A. 2016 On the interaction of Taylor length scale size droplets and isotropic turbulence. J. Fluid Mech. 806, 356412.CrossRefGoogle Scholar
Elghobashi, S. 2019 Direct numerical simulation of turbulent flows laden with droplets or bubbles. Annu. Rev. Fluid Mech. 51, 217244.CrossRefGoogle Scholar
Ern, P., Risso, F., Fabre, D. & Magnaudet, J. 2012 Wake-induced oscillatory paths of bodies freely rising or falling in fluids. Annu. Rev. Fluid Mech. 44, 97121.CrossRefGoogle Scholar
Hesketh, R. P., Etchells, A. W. & Russell, T. W. F. 1991 Experimental observations of bubble breakage in turbulent flow. Ind. Engng Chem. Res. 30 (5), 835841.CrossRefGoogle Scholar
Hinze, J. O. 1955 Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes. AIChE J. 1 (3), 289295.CrossRefGoogle Scholar
Hulburt, H. M. & Katz, S. 1964 Some problems in particle technology: a statistical mechanical formulation. Chem. Engng Sci. 19 (8), 555574.CrossRefGoogle Scholar
Jakobsen, H. A. 2014 Chemical Reactor Modeling. Springer.CrossRefGoogle Scholar
Kailasnath, P., Sreenivasan, K. R. & Stolovitzky, G. 1992 Probability density of velocity increments in turbulent flows. Phys. Rev. Lett. 68 (18), 2766.CrossRefGoogle ScholarPubMed
Kawase, Y. & Moo-Young, M. 1990 Mathematical models for design of bioreactors: applications of: Kolmogoroff's theory of isotropic turbulence. Chem. Engng J. 43 (1), B19B41.CrossRefGoogle Scholar
Kolmogorov, A. 1949 On the breakage of drops in a turbulent flow. Dokl. Akad. Nauk SSSR 66, 825828.Google Scholar
Kolmogorov, A. N. 1962 A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. J. Fluid Mech. 13 (1), 8285.CrossRefGoogle Scholar
Lalanne, B., Masbernat, O. & Risso, F. 2019 A model for drop and bubble breakup frequency based on turbulence spectra. AIChE J. 65 (1), 347359.CrossRefGoogle Scholar
Lamb, H. 1932 Hydrodynamics. Dover Publications.Google Scholar
Li, Y. & Meneveau, C. 2005 Origin of non-Gaussian statistics in hydrodynamic turbulence. Phys. Rev. Lett. 95 (16), 164502.CrossRefGoogle ScholarPubMed
Liss, P. S. & Merlivat, L. 1986 Air-sea gas exchange rates: introduction and synthesis. In The Role of Air–Sea Exchange in Geochemical Cycling, pp. 113–127. Springer.CrossRefGoogle Scholar
Lohse, D. 2018 Bubble puzzles: from fundamentals to applications. Phys. Rev. Fluids 3 (11), 110504.CrossRefGoogle Scholar
Lu, J. C., Fernandez, A. & Tryggvason, G. 2005 Drag reduction in a turbulent channel due to bubble injection. Phys. Fluids 17, 095102.CrossRefGoogle Scholar
Lu, J. & Tryggvason, G. 2008 Effect of bubble deformability in turbulent bubbly upflow in a vertical channel. Phys. Fluids 20 (4), 040701.CrossRefGoogle Scholar
Martínez-Bazán, C., Montanes, J. L. & Lasheras, J. C. 1999 a On the breakup of an air bubble injected into a fully developed turbulent flow. Part 1. Breakup frequency. J. Fluid Mech. 401,157182.CrossRefGoogle Scholar
Martínez-Bazán, C., Montanes, J. L. & Lasheras, J. C. 1999 b On the breakup of an air bubble injected into a fully developed turbulent flow. Part 2. Size pdf of the resulting daughter bubbles. J.Fluid Mech. 401, 183207.CrossRefGoogle Scholar
Masuk, A. U. M., Salibindla, A. & Ni, R. 2019 a A robust virtual-camera 3D shape reconstruction of deforming bubbles/droplets with additional physical constraints. Intl J. Multiphase Flow 120, 103088.CrossRefGoogle Scholar
Masuk, A. U. M., Salibindla, A., Tan, S. & Ni, R. 2019 b V-onset (vertical octagonal noncorrosive stirred energetic turbulence): a vertical water tunnel with a large energy dissipation rate to study bubble/droplet deformation and breakup in strong turbulence. Rev. Sci. Instrum. 90 (8), 085105.CrossRefGoogle ScholarPubMed
Meneveau, C. & Sreenivasan, K. R. 1991 The multifractal nature of turbulent energy dissipation. J.Fluid Mech. 224, 429484.CrossRefGoogle Scholar
Mercado, J. M., Prakash, V. N., Tagawa, Y., Sun, C., Lohse, D. & International Collaboration for Turbulence Research. 2012 Lagrangian statistics of light particles in turbulence. Phys. Fluids 24 (5), 055106.CrossRefGoogle Scholar
Moore, D. W. 1965 The velocity of rise of distorted gas bubbles in a liquid of small viscosity. J. Fluid Mech. 23 (4), 749766.CrossRefGoogle Scholar
Ng, C.-L., Sankarakrishnan, R. & Sallam, K. A. 2008 Bag breakup of nonturbulent liquid jets in crossflow. Intl J. Multiphase Flow 34 (3), 241259.CrossRefGoogle Scholar
Ni, R., Kramel, S., Ouellette, N. T. & Voth, G. A. 2015 Measurements of the coupling between the tumbling of rods and the velocity gradient tensor in turbulence. J. Fluid Mech. 766, 202225.CrossRefGoogle Scholar
Ni, R. & Xia, K.-Q. 2013 Kolmogorov constants for the second-order structure function and the energy spectrum. Phys. Rev. E 87 (2), 023002.CrossRefGoogle ScholarPubMed
Prince, M. J. & Blanch, H. W. 1990 Bubble coalescence and break-up in air-sparged bubble columns. AIChE J. 36 (10), 14851499.CrossRefGoogle Scholar
Pumir, A., Bodenschatz, E. & Xu, H. 2013 Tetrahedron deformation and alignment of perceived vorticity and strain in a turbulent flow. Phys. Fluids 25 (3), 035101.CrossRefGoogle Scholar
Ramkrishna, D. 2000 Population Balances: Theory and Applications to Particulate Systems in Engineering. Elsevier.Google Scholar
Risso, F. & Fabre, J. 1998 Oscillations and breakup of a bubble immersed in a turbulent field. J. Fluid Mech. 372, 323355.CrossRefGoogle Scholar
Salibindla, A. K. R., Masuk, A. U. M., Tan, S. & Ni, R. 2020 Lift and drag coefficients of deformable bubbles in intense turbulence determined from bubble rise velocity. J. Fluid Mech. (in press).CrossRefGoogle Scholar
Schanz, D., Gesemann, S. & Schröder, A. 2016 Shake-the-box: Lagrangian particle tracking at high particle image densities. Exp. Fluids. 57 (5), 70.CrossRefGoogle Scholar
Sevik, M. & Park, S. H. 1973 The splitting of drops and bubbles by turbulent fluid flow. J. Fluids Eng. 95 (1), 5360.CrossRefGoogle Scholar
Srdic, A., Fernando, H. J. S. & Montenegro, L. 1996 Generation of nearly isotropic turbulence using two oscillating grids. Exp. Fluids 20 (5), 395397.CrossRefGoogle Scholar
Sreenivasan, K. R. 1995 On the universality of the Kolmogorov constant. Phys. Fluids 7 (11), 27782784.CrossRefGoogle Scholar
Sreenivasan, K. R. 1999 Fluid turbulence. Rev. Mod. Phys. 71 (2), S383.CrossRefGoogle Scholar
Tan, S., Salibindla, A., Masuk, A. U. M. & Ni, R. 2019 An open-source shake-the-box method and its performance evaluation. In 13th International Symposium on Particle Image Velocimetry.Google Scholar
Tan, S., Salibindla, A., Masuk, A. U. M. & Ni, R. 2020 Introducing openLPT: new method of removing ghost particles and high-concentration particle shadow tracking. Exp. Fluids 61 (2), 47.CrossRefGoogle Scholar
Variano, E. A., Bodenschatz, E. & Cowen, E. A. 2004 A random synthetic jet array driven turbulence tank. Exp. Fluids 37 (4), 613615.CrossRefGoogle Scholar
Vejražka, J., Zedníková, M. & Stanovskỳ, P. 2018 Experiments on breakup of bubbles in a turbulent flow. AIChE J. 64 (2), 740757.CrossRefGoogle Scholar
Verschoof, R. A., Van Der Veen, R. C. A., Sun, C. & Lohse, D. 2016 Bubble drag reduction requires large bubbles. Phys. Rev. Lett. 117 (10), 104502.CrossRefGoogle ScholarPubMed
Villermaux, E. & Bossa, B. 2009 Single-drop fragmentation determines size distribution of raindrops. Nat. Phys. 5 (9), 697.CrossRefGoogle Scholar
Xu, H., Pumir, A. & Bodenschatz, E. 2011 The pirouette effect in turbulent flows. Nat. Phys. 7 (9), 709712.CrossRefGoogle Scholar