Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T19:25:39.218Z Has data issue: false hasContentIssue false

Short-time self-diffusion, collective diffusion and effective viscosity of dilute hard sphere magnetic suspensions

Published online by Cambridge University Press:  17 February 2016

Krzysztof A. Mizerski*
Affiliation:
Department of Magnetism, Institute of Geophysics, Polish Academy of Sciences – Centre for Polar Studies KNOW, Leading National Research Centre, ul. Ksiecia Janusza 64, 01-452 Warsaw, Poland
Eligiusz Wajnryb
Affiliation:
Department of Mechanics and Physics of Fluids, Institute of Fundamental and Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland
*
Email address for correspondence: kamiz@igf.edu.pl

Abstract

The virial corrections to short-time self- and collective diffusion coefficients as well as the effective viscosity are calculated for suspensions of hard spheres with the same radii and constant (blocked within the particle) magnetization modelled by a point dipole. Analytic, integral formulae derived from basic principles of statistical mechanics are provided for both cases – in the absence and in the presence of an external magnetic field. In the former case the diffusion and viscosity coefficients are evaluated numerically as a function of the strength of magnetic interactions between the particles and it is reported that the translational collective diffusion coefficient is significantly greater than all the other coefficients. In the presence of an external magnetic field the coefficients become anisotropic and are evaluated in the asymptotic regime of weak interparticle magnetic interactions.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bacri, J. C., Cebers, A., Bourdon, A., Demouchy, G., Heegaard, B. M., Kashevsky, B. & Perzynski, R. 1995 Transient grating in a ferrofiuid under magnetic field: effect of magnetic interactions on the diffusion coefficient of translation. Phys. Rev. E 52, 39363942.Google Scholar
Batchelor, G. K. 1972 Sedimentation in a dilute dispersion of spheres. J. Fluid Mech. 52, 245268.Google Scholar
Batchelor, G. K. 1976 Brownian diffusion of particles with hydrodynamic interaction. J. Fluid Mech. 74, 129.Google Scholar
Batchelor, G. K. & Green, J. T. 1972 The determination of the bulk stress in a suspension of spherical particles to order $c^{2}$ . J. Fluid Mech. 56, 401427.Google Scholar
Bayat, N., Nethe, A., Guldbakke, J. M., Hesselbach, J., Naletova, V. A., Stahlmann, H.-D., Uhlmann, E. & Zimmermann, K. 2009 Technical applications. Lect. Notes Phys. 763, 359430.Google Scholar
Buevich, Yu. A., Zubarev, A. Yu. & Ivanov, A. O. 1989 Brownian diffusion in concentrated ferrocolloids. Magnetohydrodynamics 25, 172176.Google Scholar
Cebula, D. J., Ottewill, R. H., Ralston, J. & Pusey, P. N. 1981 Investigations of microemulsions by light scattering and neutron scattering. J. Chem. Soc. Faraday Trans. 1 77, 25852612.Google Scholar
Cichocki, B., Ekiel-Jezewska, M. L., Szymczak, P. & Wajnryb, E. 2002 Three-particle contribution to sedimentation and collective diffusion in hard-sphere suspensions. J. Chem. Phys. 117, 12311241.Google Scholar
Cichocki, B., Ekiel-Jezewska, M. L. & Wajnryb, E. 1999 Lubrication corrections for three-particle contribution to short-time self-diffusion coefficients in colloidal dispersions. J. Chem. Phys. 111, 32653273.Google Scholar
Cichocki, B., Ekiel-Jezewska, M. L. & Wajnryb, E. 2003 Three-particle contribution to effective viscosity of hard-sphere suspensions. J. Chem. Phys. 119, 606619.Google Scholar
Cichocki, B. & Felderhof, B. U. 1988 Short-time diffusion coefficients and high frequency viscosity of dilute suspensions of spherical Brownian particles. J. Chem. Phys. 89, 10491054.CrossRefGoogle Scholar
Cichocki, B. & Felderhof, B. U. 1989 Sedimentation and self-diffusion in suspensions of spherical particles. Phys. A 154, 213232.Google Scholar
Cichocki, B., Felderhof, B. U., Hinsen, K., Wajnryb, E. & Bławzdziewicz, J. 1994 Friction and mobility of many spheres in Stokes flow. J. Chem. Phys. 100, 37803790.Google Scholar
Cichocki, B., Felderhof, B. U. & Schmitz, R. 1988 Hydrodynamic interactions between two spherical particles. Physico-chem. Hydrodyn. 10, 383403.Google Scholar
Einstein, A. 1956 Investigations on the Theory of Brownian Movement. Dover.Google Scholar
Hezaveh, H., Fazlali, A. & Noshadi, I. 2012 Synthesis, rheological properties and magnetoviscous effect of Fe $_{2}$ O $_{3}$ /paraffin ferrofluids. J. Taiwan Inst. Chem. Engrs 43, 159164.Google Scholar
Jones, R. B. 1988 Rotational diffusion of a tracer colloid particle: I. Short time orientational correlations. Phys. A 150, 339356.Google Scholar
Kim, S. & Karrila, S. J. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.Google Scholar
Kops-Werkhoven, M. M. & Fijnaut, H. M. 1981 Dynamic light scattering and sedimantation experiments on silica dispersions at finite concentrations. J. Chem. Phys. 74, 16181625.Google Scholar
Kops-Werkhoven, M. M. & Fijnaut, H. M. 1982 Dynamic behaviour of silica dispersions near the optical match point. J. Chem. Phys. 77, 22422252.Google Scholar
van Megen, W. & Underwood, S. M. 1989 Tracer diffusion in concentrated dispersions. III. Mean squared displacements and self diffusion coefficients. J. Chem. Phys. 91, 552559.Google Scholar
Morozov, K. I. 1993 The translational and rotational diffusion of colloidal ferroparticles. J. Magn. Magn. Mater. 122, 98101.Google Scholar
Morozov, K. I. 1996 Gradient diffusion in concentrated ferrocolloids under the influence of a magnetic field. Phys. Rev. E 53, 38413846.Google Scholar
Odenbach, S. 2003 Ferrofluids – magnetically controlled suspensions. Colloids Surf. A 217, 171178.CrossRefGoogle Scholar
Odenbach, S. 2004 Recent progress in magnetic fluid research. J. Phys.: Condens. Matter 16, R1135–R1150.Google Scholar
Pankhurst, Q. A., Connolly, J., Jones, S. K. & Dobson, J. 2003 Applications of magnetic nanoparticles in biomedicine. J. Phys. D: Appl. Phys. 36, R167–R181.Google Scholar
Pshenichnikov, A. F., Elfimova, E. A. & Ivanov, A. O. 2011 Magnetophoresis, sedimentation, and diffusion of particles in concentrated magnetic fluids. J. Chem. Phys. 134, 184508.Google Scholar
Pusey, P. N. & van Megen, W. 1983 Measurement of the short-time self-mobility of particles in concentrated suspension: evidence for many-particle hydrodynamic interactions. J. Phys. (Paris) 44, 285291.Google Scholar
Rotne, J. & Prager, S. 1969 Variational treatment of hydrodynamic interaction in polymers. J. Chem. Phys. 50, 48314837.Google Scholar
Segre, P. N., Behrend, O. P. & Pusey, P. N. 1995 Short-time Brownian motion in colloidal suspensions: experiment and simulation. Phys. Rev. E 52, 50705083.Google ScholarPubMed
Sonntag, H. & Strenge, K. 1988 Coagulation Kinetics and Structure Formation. Springer.Google Scholar
Trahms, L. 2009 Biomedical applications of magnetic nanoparticles. Lect. Notes Phys. 763, 327358.Google Scholar
Wajnryb, E. & Dahler, J. S. 1997 The Newtonian viscosity of a moderately dense suspension. In Adv. Chem. Phys. (ed. Prigogine, I. & Rice, S. A.), vol. 102, pp. 193313. Wiley.Google Scholar
Wajnryb, E., Mizerski, K. A., Zuk, P. J. & Szymczak, P. 2013 Generalization of the Rotne–Prager–Yamakawa mobility and shear disturbance tensors. J. Fluid Mech. 731, R3.Google Scholar
Yamakawa, H. 1970 Transport properties of polymer chains in dilute solution: hydrodynamic interaction. J. Chem. Phys. 53, 436443.Google Scholar
Zimmermann, K., Naletova, V. A., Zeidis, I., Turkov, V. A., Kolev, E., Lukashevitch, M. V. & Stepanov, G. V. 2007 A deformable magnetisable worm in a magnetic field – a prototype of a mobile crawling robot. J. Magn. Magn. Mater. 311, 450453.Google Scholar
Zubarev, A. Y. & Chirikov, D. N. 2010 On the theory of the magnetoviscous effect in ferrofluids. J. Expl Theor. Phys. 137, 11391150.Google Scholar
Zurita-Gotor, M., Blawzdziewicz, J. & Wajnryb, E. 2007 Motion of a rod-like particle between parallel walls with application to suspension rheology. J. Rheol. 51, 7197.Google Scholar