Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T14:52:02.608Z Has data issue: false hasContentIssue false

Shear-induced instabilities of flows through submerged vegetation

Published online by Cambridge University Press:  23 March 2020

Clint Y. H. Wong*
Affiliation:
Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, OxfordOX2 6GG, UK
Philippe H. Trinh
Affiliation:
Department of Mathematical Sciences, University of Bath, BathBA2 7AY, UK
S. Jonathan Chapman
Affiliation:
Oxford Centre for Industrial and Applied Mathematics, Mathematical Institute, University of Oxford, OxfordOX2 6GG, UK
*
Email address for correspondence: clint.wong@maths.ox.ac.uk

Abstract

We consider the instabilities of flows through a submerged canopy and show how the full governing equations of the fluid–structure interactions can be reduced to a compact framework that captures many key features of vegetative flow. First, by modelling the canopy as a collection of homogeneous elastic beams, we predict the steady configuration of the plants in response to a unidirectional flow. This treatment couples the beam equations in the canopy to the fluid momentum equations. Subsequently, a linear stability analysis suggests new insights into the development of instabilities at the surface of the vegetative region. In particular, we show that shear at the top of the canopy is a dominant factor in determining the onset of instabilities known as monami. Based on numerical and asymptotic analysis of the quadratic eigenvalue problem, the system is shown to be stable if the canopy is sufficiently sparse.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alben, S., Shelley, M. J. & Zhang, J. 2002 Drag reduction through self-similar bending of a flexible body. Nature 420 (6915), 479481.CrossRefGoogle ScholarPubMed
Batchelor, G. K. 2000 An Introduction to Fluid Dynamics. Cambridge University Press.CrossRefGoogle Scholar
Bradley, K. & Houser, C. 2009 Relative velocity of seagrass blades: implications for wave attenuation in low-energy environments. J. Geophys. Res. 114 (1), 113.CrossRefGoogle Scholar
Brennen, C. E.1982 A review of added mass and fluid inertial forces. Tech. Rep. Naval Civil Engineering Laboratory, Sierra Madre.Google Scholar
Chapman, S. J. 1995 A mean-field model of superconducting vortices in three dimensions. SIAM J. Appl. Maths 55 (5), 12591274.CrossRefGoogle Scholar
Chapman, S. J. 2002 Subcritical transition in channel flows. J. Fluid Mech. 451, 3597.CrossRefGoogle Scholar
Chen, Z., Jiang, C. & Nepf, H. M. 2013 Flow adjustment at the leading edge of a submerged aquatic canopy. Water Resour. Res. 49 (9), 55375551.CrossRefGoogle Scholar
Cushman-Roisin, B. 2005 Kelvin–Helmholtz instability as a boundary-value problem. Environ. Fluid Mech. 5 (6), 507525.CrossRefGoogle Scholar
Drazin, P. G. & Reid, W. H. 1982 Hydrodynamic Stability. Cambridge University Press.Google Scholar
Driscoll, T. A., Hale, N. & Trefethen, L. N. 2014 Chebfun Guide Pafnuty.Google Scholar
Dunn, C., Lopez, F. & García, M. H. 1996 Mean flow and turbulence in a laboratory channel with simulated vegetation. In Hydraulic Engineering Series No. 51, UILU-ENG-96-2009. University of Illinois.Google Scholar
Dupont, S., Gosselin, F. P., Py, C., de Langre, E., Hemon, P. & Brunet, Y. 2010 Modelling waving crops using large-eddy simulation: comparison with experiments and a linear stability analysis. J. Fluid Mech. 652, 544.CrossRefGoogle Scholar
Finnigan, J. J. 2000 Turbulence in plant canopies. Annu. Rev. Fluid Mech. 32 (1), 519571.CrossRefGoogle Scholar
Ghisalberti, M. & Nepf, H. M. 2002 Mixing layers and coherent structures in vegetated aquatic flows. J. Geophys. Res. 107 (C2), 3011.CrossRefGoogle Scholar
Ghisalberti, M. & Nepf, H. M. 2004 The limited growth of vegetated shear layers. Water Resour. Res. 40 (7), 112.Google Scholar
Gijón Mancheño, A.2016 Interaction between wave hydrodynamics and flexible vegetation. PhD thesis, Delft University of Technology.Google Scholar
Goussis, D. A. & Pearlstein, A. J. 1989 Removal of infinite eigenvalues in the generalized matrix eigenvalue problem. J. Comput. Phys. 84 (1), 242246.CrossRefGoogle Scholar
Hammarling, S., Munro, C. J. & Tisseur, F. 2013 An algorithm for the complete solution of quadratic eigenvalue problems. ACM Trans. Math. Softw. 39 (3), 119.CrossRefGoogle Scholar
Hu, Z., Suzuki, T., Zitman, T., Uittewaal, W. & Stive, M. 2014 Laboratory study on wave dissipation by vegetation in combined current-wave flow. Coast. Engng 88, 131142.CrossRefGoogle Scholar
Landau, L. D., Lifshitz, E. M., Sykes, J. B., Reid, W. H. & Dill, E. H. 1960 Theory of Elasticity. Pergamon Press.Google Scholar
de Langre, E. 2008 Effects of wind on plants. Annu. Rev. Fluid Mech. 40 (1), 141168.CrossRefGoogle Scholar
Lawrence, G. A., Browand, F. K. & Redekopp, L. G. 1991 The stability of a sheared density interface. Phys. Fluids A 3 (10), 23602370.CrossRefGoogle Scholar
Leclercq, T. & de Langre, E. 2018 Reconfiguration of elastic blades in oscillatory flow. J. Fluid Mech. 838, 606630.CrossRefGoogle Scholar
Lei, J. & Nepf, H. M. 2019 Blade dynamics in combined waves and current. J. Fluids Struct. 87, 137149.CrossRefGoogle Scholar
Lowe, R. J., Koseff, J. R. & Monismith, S. G. 2005 Oscillatory flow through submerged canopies: 1. Velocity structure. J. Geophys. Res. C 110 (10), 117.Google Scholar
Luhar, M. & Nepf, H. M. 2011 Flow-induced reconfiguration of buoyant and flexible aquatic vegetation. Limnol. Oceanogr. 56 (6), 20032017.CrossRefGoogle Scholar
Luhar, M. & Nepf, H. M. 2016 Wave-induced dynamics of flexible blades. J. Fluids Struct. 61, 2041.CrossRefGoogle Scholar
Luminari, M. N., Airiau, C. & Bottaro, A. 2016 Drag-model sensitivity of Kelvin–Helmholtz waves in canopy flows. Phys. Fluids 28 (12), 124103.CrossRefGoogle Scholar
Mandel, T. L., Gakhar, S., Chung, H., Rosenzweig, I. & Koseff, J. R. 2019 On the surface expression of a canopy-generated shear instability. J. Fluid Mech. 867, 633660.CrossRefGoogle Scholar
Marion, A., Nikora, V., Puijalon, S., Bouma, T., Koll, K., Ballio, F., Tait, S., Zaramella, M., Sukhodolov, A., O’Hare, M. et al. 2014 Aquatic interfaces: a hydrodynamic and ecological perspective. J. Hydraul Res. 52 (6), 744758.Google Scholar
Mattis, S. A.2013 Mathematical modeling of flow through vegetated regions. PhD thesis, University of Texas at Austin.Google Scholar
Mattis, S. A., Kees, C. E., Wei, M. V., Dimakopoulos, A. & Dawson, C. N. 2019 Computational model for wave attenuation by flexible vegetation. J. Waterway Port Coastal Ocean Engng 145 (1), 04018033.Google Scholar
McMillen, T. & Goriely, A. 2003 Whip waves. Phys. D Nonlinear Phenom. 184 (1-4), 192225.CrossRefGoogle Scholar
Mei, C. C., Chan, I. C. & Liu, P. L. 2014 Waves of intermediate length through an array of vertical cylinders. Environ. Fluid Mech. 14 (1), 235261.CrossRefGoogle Scholar
Mei, C. C., Chan, I. C., Liu, P. L., Huang, Z. & Zhang, W. 2011 Long waves through emergent coastal vegetation. J. Fluid Mech. 687, 461491.CrossRefGoogle Scholar
Mendez, F. J. & Losada, I. J. 2004 An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields. Coast. Engng 51 (2), 103118.CrossRefGoogle Scholar
Morris, R. L., Konlechner, T. M., Ghisalberti, M. & Swearer, S. E. 2018 From grey to green: efficacy of eco-engineering solutions for nature-based coastal defence. Glob. Change Biol. 24 (5), 18271842.CrossRefGoogle ScholarPubMed
Nepf, H. M. 2012 Flow and transport in regions with aquatic vegetation. Annu. Rev. Fluid Mech. 44 (1), 123142.CrossRefGoogle Scholar
Newman, J. N. 1977 Marine Hydrodynamics. MIT Press.CrossRefGoogle Scholar
Nikora, V. 2010 Hydrodynamics of aquatic ecosystems: an interface between ecology, biomechanics and environmental fluid mechanics. River Res. Appl. 26 (4), 367384.CrossRefGoogle Scholar
Orszag, S. A. 1971 Accurate solution of the Orr–Sommerfeld stability equation. J. Fluid Mech. 50 (4), 689703.CrossRefGoogle Scholar
Poggi, D., Porporato, A., Ridolfi, L., Albertson, J. D. & Katul, G. G. 2004 The effect of vegetation density on canopy sub-layer turbulence. Boundary-Layer Meteorol. 111 (3), 565587.CrossRefGoogle Scholar
Ramberg, S. E. 1983 The effects of yaw and finite length upon the vortex wakes of stationary and vibrating circular cylinders. J. Fluid Mech. 128, 81107.CrossRefGoogle Scholar
Raupach, M. R., Finnigan, J. J. & Brunet, Y. 1996 Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol. 78 (3-4), 351382.CrossRefGoogle Scholar
Reddy, S. C., Schmid, P. J. & Henningson, D. S. 1993 Pseudospectra of the Orr–Sommerfeld operator. SIAM J. Appl. Maths 53 (1), 1547.CrossRefGoogle Scholar
Sharma, A. & García-Mayoral, R. 2018 Turbulent flows over sparse canopies. J. Phys.: Conf. Ser. 1001 (1), 012012.Google Scholar
Sharma, A. & García-Mayoral, R. 2020 Scaling and dynamics of turbulence over sparse canopies. J. Fluid Mech. 888, A1.CrossRefGoogle Scholar
Sharma, A., Gomez de Segura, G. & García-Mayoral, R. 2017 Linear stability analysis of turbulent flows over dense filament canopies. In 10th Int. Symp. Turbul. Shear Flow Phenomena, TSFP 2017, Illinois Institute of Technology.Google Scholar
Singh, R., Bandi, M. M., Mahadevan, A. & Mandre, S. 2016 Linear stability analysis for monami in a submerged seagrass bed. J. Fluid Mech. 786, R11–R1–12.CrossRefGoogle Scholar
Sumer, B. M. & Fredsøe, J. 2006 Hydrodynamics Around Cylindrical Structures. World Scientific.CrossRefGoogle Scholar
Sundin, J. & Bagheri, S. 2019 Interaction between hairy surfaces and turbulence for different surface time scales. J. Fluid Mech. 861, 556584.CrossRefGoogle Scholar
Vakil, A. & Green, S. I. 2009 Drag and lift coefficients of inclined finite circular cylinders at moderate Reynolds numbers. Comput. Fluids 38 (9), 17711781.CrossRefGoogle Scholar
Vogel, S. 1994 Life in Moving Fluids: The Physical Biology of Flow. Princeton University Press.Google Scholar
Wang, B., Guo, X. & Mei, C. C. 2015 Surface water waves over a shallow canopy. J. Fluid Mech. 768, 572599.CrossRefGoogle Scholar
Wathen, A. J. 2015 Preconditioning. Acta Numer. 24, 329376.CrossRefGoogle Scholar
Weideman, J. A. C. & Reddy, S. C. 2000 A MATLAB differentiation matrix suite. ACM Trans. Math. Softw. 26 (4), 465519.CrossRefGoogle Scholar
Zampogna, G. A., Pluvinage, F., Kourta, A. & Bottaro, A. 2016 Instability of canopy flows. Water Resour. Res. 52 (7), 54215432.CrossRefGoogle Scholar
Zeller, R. B., Weitzman, J. S., Abbett, M. E., Zarama, F. J., Fringer, O. B. & Koseff, J. R. 2014 Improved parameterization of seagrass blade dynamics and wave attenuation based on numerical and laboratory experiments. Limnol. Oceanogr. 59 (1), 251266.CrossRefGoogle Scholar
Zeller, R. B., Zarama, F. J., Weitzman, J. S. & Koseff, J. R. 2015 A simple and practical model for combined wave-current canopy flows. J. Fluid Mech. 767, 842880.CrossRefGoogle Scholar
Zhao, M., Cheng, L. & Zhou, T. 2009 Direct numerical simulation of three-dimensional flow past a yawed circular cylinder of infinite length. J. Fluids Struct. 25 (5), 831847.CrossRefGoogle Scholar
Zhou, T., Wang, H., Razali, S. F. M., Zhou, Y. & Cheng, L. 2010 Three-dimensional vorticity measurements in the wake of a yawed circular cylinder. Phys. Fluids 22 (1), 1015.CrossRefGoogle Scholar