Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T12:38:23.125Z Has data issue: false hasContentIssue false

Settling of an asymmetric dumbbell in a quiescent fluid

Published online by Cambridge University Press:  03 August 2016

F. Candelier
Affiliation:
IUSTI, CNRS, UMR 7343, University of Aix-Marseille, 13013 Marseille, CEDEX 13, France
B. Mehlig*
Affiliation:
Department of Physics, Gothenburg University, SE-41296 Gothenburg, Sweden
*
Email address for correspondence: Bernhard.Mehlig@physics.gu.se

Abstract

We compute the hydrodynamic torque on a dumbbell (two spheres linked by a massless rigid rod) settling in a quiescent fluid at small but finite Reynolds number. The spheres have the same mass densities but different sizes. When the sizes are quite different, the dumbbell settles vertically, aligned with the direction of gravity, the largest sphere first. But when the size difference is sufficiently small, then its steady-state angle is determined by a competition between the size difference and the Reynolds number. When the sizes of the spheres are exactly equal, then fluid inertia causes the dumbbell to settle in a horizontal orientation.

Type
Papers
Copyright
© 2016 Cambridge University Press 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Byron, M., Einarsson, J., Gustavsson, K., Voth, G., Mehlig, B. & Variano, E. 2015 Shape-dependence of particle rotation in isotropic turbulence. Phys. Fluids 27, 035101.Google Scholar
Candelier, F., Einarsson, J., Lundell, F., Mehlig, B. & Angilella, J. R. 2015 The role of inertia for the rotation of a nearly spherical particle in a general linear flow. Phys. Rev. E 91, 053023; erratum, 059901.Google Scholar
Charru, F., Mouilleron, H. & Eiff, O. 2004 Erosion and deposition of particles on a bed sheared by a viscous flow. J. Fluid Mech. 519, 5580.Google Scholar
Dabade, V., Navaneeth, K. M. & Subramanian, G. 2015 Effects of inertia and viscoelasticity on sedimenting anisotropic particles. J. Fluid Mech. 778, 133188.Google Scholar
Dahlklid, A. A. 2011 Finite wavelength selection for the linear instability of a suspension of settling spheroids. J. Fluid Mech. 689, 183202.CrossRefGoogle Scholar
Durham, W. M., Climent, E., Barry, M., de Lillo, F., Boffetta, G., Cencini, M. & Stocker, R. 2013 Turbulence drives microscale patches of motile phytoplankton. Nat. Commun. 4, 2148.Google Scholar
Einarsson, J., Candelier, F., Lundell, F., Angilella, J. R. & Mehlig, B. 2015a Effect of weak fluid inertia upon Jeffery orbits. Phys. Rev. E 91, 041002(R).Google ScholarPubMed
Einarsson, J., Candelier, F., Lundell, F., Angilella, J. R. & Mehlig, B. 2015b Rotation of a spheroid in a simple shear at small Reynolds number. Phys. Fluids 27, 063301.Google Scholar
Good, G. H., Ireland, P. J., Bewley, G. P., Bodenschatz, E., Collins, L. R. & Warhaft, Z. 2014 Settling regimes of inertial particles in isotropic turbulence. J. Fluid Mech. 759, R3.Google Scholar
Guasto, J. S., Rusconi, R. & Stocker, R. 2012 Fluid mechanics of planktonic microorganisms. Annu. Rev. Fluid Mech. 44, 373.Google Scholar
Guazzelli, E. & Hinch, J. 2011 Fluctuations and instability in sedimentation. Annu. Rev. Fluid Mech. 43, 97.CrossRefGoogle Scholar
Gustavsson, K., Berglund, F., Jonsson, P. R. & Mehlig, B. 2016 Preferential sampling and small-scale clustering of gyrotactic microswimmers in turbulence. Phys. Rev. Lett. 116, 108104.CrossRefGoogle ScholarPubMed
Gustavsson, K., Einarsson, J. & Mehlig, B. 2014 Tumbling of small axisymmetric particles in random and turbulent flows. Phys. Rev. Lett. 112, 014501.Google Scholar
Happel, J. & Brenner, H. 1983 Low Reynolds Hydrodynamics. Kluwer.Google Scholar
Jeffery, G. B. 1922 The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A 102 (715), 161179.Google Scholar
Jonsson, P. R. 1989 Vertical distributions of planktonic ciliates – an experimental analysis of swimming behaviour. Mar. Ecol. Prog. Ser. 52, 39.Google Scholar
Khayat, R. E. & Cox, R. G. 1989 Inertia effects on the motion of long slender bodies. J. Fluid Mech. 209, 435462.Google Scholar
Kim, S. & Karrila, S. J. 1991 Microhydrodynamics: Principles and Selected Applications. Butterworth-Heinemann.Google Scholar
Koch, D. L. & Shaqfeh, E. S. G. 1989 The instability of a dispersion of sedimenting spheroids. J. Fluid Mech. 209, 521542.Google Scholar
Lovalenti, P. M. & Brady, J. F. 1993 The force on a bubble, drop or particle in arbitrary time-dependent motion at small Reynolds number. Phys. Fluids 5 (9), 21042116.Google Scholar
Mackaplow, M. B. & Shaqfeh, E. S. G. 1998 A numerical study of the sedimentation of fibre suspensions. J. Fluid Mech. 376, 149182.CrossRefGoogle Scholar
Maxey, M. R. 1987 The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J. Fluid Mech. 174, 441465.Google Scholar
Maxey, M. R. & Riley, J. J. 1983 Equation of motion for a small rigid sphere in a non-uniform flow. Phys. Fluids 26, 883889.CrossRefGoogle Scholar
Mei, R. 1992 Flow past a sphere with an oscillation in the free-stream velocity and unsteady drag at finite Reynolds number. J. Fluid Mech. 237, 323.Google Scholar
Metzger, B., Butler, J. E. & Guazzelli, E. 2007 Experimental investigation of the instability of a sedimenting suspension of fibres. J. Fluid Mech. 575, 307332.Google Scholar
Parsa, S & Voth, G. A. 2014 Inertial range scaling in rotations of long rods in turbulence. Phys. Rev. Lett. 112, 024501.Google Scholar
Pignatel, F., Nicolas, M. & Guazzelli, E. 2011 A falling cloud of particles at a small but finite Reynolds number. J. Fluid Mech. 671, 3451.Google Scholar
Proudman, I. & Pearson, J. R. A. 1957 Expansions at small Reynolds numbers for the flow past a sphere and circular cylinder. J. Fluid Mech. 22 (2), 385400.Google Scholar
Pruppacher, H. R. & Klett, J. D. 2010 Microphysics of Clouds and Precipitation, 2nd edn. Springer.Google Scholar
Rosén, T., Einarsson, J., Nordmark, A., Aidun, C. K., Lundell, F. & Mehlig, B. 2015 Numerical analysis of the angular motion of a neutrally buoyant spheroid in shear flow at small Reynolds numbers. Phys. Rev. E 92, 063022.Google Scholar
Roy, A., Tierney, L., Voth, G. A. & Koch, D. L.2016 Inertial symmetry-breaking transitions in the settling of asymmetric rod-like and ramified particles.Google Scholar
Sano, T. 1981 Unsteady flow past a sphere at low Reynolds number. J. Fluid Mech. 112, 433.Google Scholar
Shin, M., Koch, D. L. & Subramanian, G. 2009 Structure and dynamics of dilute suspensions of finite-Reynolds number settling fibres. Phys. Fluids 21, 123304.Google Scholar
Soldati, A. & Voth, G. A. 2017 Anisotropic particles in turbulence. Annu. Rev. Fluid Mech. 49 (in press).Google Scholar
Subramanian, G. & Koch, D. L. 2005 Inertial effects on fibre motion in simple shear flow. J. Fluid Mech. 535, 383414.Google Scholar
Tornberg, A.-K. & Gustavsson, K. 2006 A numerical method for simulations of rigid fibre suspensions. J. Comput. Phys. 376, 172196.Google Scholar
Zhan, C., Sardina, G., Lushi, E. & Brandt, L. 2014 Accumulation of motile elongated micro-organisms in turbulence. J. Fluid Mech. 793, 22.CrossRefGoogle Scholar
Zhang, F., Dahlkild, A. A., Gustavsson, K. & Lundell, F. 2014 Near-wall convection in a sedimenting suspension of fibers. AIChE J. 60, 42534265.Google Scholar