Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T14:20:42.876Z Has data issue: false hasContentIssue false

Self-similar pressure-atomized sprays

Published online by Cambridge University Press:  21 February 2020

H. Hinterbichler*
Affiliation:
Institute of Fluid Mechanics and Heat Transfer, Graz University of Technology, Inffeldgasse 25/F, 8010 Graz, Austria
H. Steiner
Affiliation:
Institute of Fluid Mechanics and Heat Transfer, Graz University of Technology, Inffeldgasse 25/F, 8010 Graz, Austria
G. Brenn
Affiliation:
Institute of Fluid Mechanics and Heat Transfer, Graz University of Technology, Inffeldgasse 25/F, 8010 Graz, Austria
*
Email address for correspondence: hannes.hinterbichler@tugraz.at

Abstract

Sprays produced by pressure atomization of various liquids are investigated experimentally, showing the self-similar flow fields of both the liquid and the gas phases. Phase-Doppler measurements are conducted in the sprays at varying radial and axial distances from the atomizer orifice. The theoretical description of the gas flow field based on boundary-layer theory reveals a self-similar velocity field driven by momentum transfer from the liquid phase ejected into the gaseous environment. The momentum loss of the liquid droplet phase is also found to be self-similar, which was to be expected, but not shown in the literature before. The analytical self-similar description of the two-phase flow field is in excellent agreement with the experimental data.

Type
JFM Papers
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecht, H.-E., Damaschke, N., Borys, M. & Tropea, C. 2003 Laser Doppler and Phase Doppler Measurement Techniques. Springer.CrossRefGoogle Scholar
Ariyapadi, S., Balachandar, R. & Berruti, F. 2003 Spray characteristics of two-phase feed nozzles. Can. J. Chem. Engng 81, 923939.CrossRefGoogle Scholar
Bade, K. M. & Schick, R. J. 2011 Phase Doppler interferometry volume flux sensitivity to parametric setting and droplet trajectory. Atomiz. Sprays 21, 537551.CrossRefGoogle Scholar
Balachandar, S. & Eaton, J. K. 2010 Turbulent dispersed multiphase flow. Annu. Rev. Fluid Mech. 42, 111133.CrossRefGoogle Scholar
Brenn, G. 2017 Analytical Solutions for Transport Processes. Springer.CrossRefGoogle Scholar
Chao, B. T. 1964 Turbulent transport behaviour of small particles in dilute suspension. Österr. Ingr.- Arch. 18, 721.Google Scholar
Cossali, G. E. 2001 An integral model for gas entrainment into full cone sprays. J. Fluid Mech. 439, 353366.CrossRefGoogle Scholar
Cossali, G. E., Gerla, A., Coghe, A. & Brunello, G.1996 Effect of gas density and temperature on air entrainment in a transient diesel spray. SAE Technical Paper 960862.CrossRefGoogle Scholar
Dafsari, R. A., Vashahi, F. & Lee, J. 2017 Effect of swirl chamber length on the atomization characteristics of a pressure-swirl nozzle. Atomiz. Sprays 27, 859874.CrossRefGoogle Scholar
Desantes, J. M., Salvador, F. J., López, J. J. & De la Morena, J. 2011 Study of mass and momentum transfer in diesel sprays based on X-ray mass distribution measurements and on a theoretical derivation. Exp. Fluids 50, 233246.CrossRefGoogle Scholar
Dhivyaraja, K., Gaddes, D., Freeman, E., Tadigadapa, S. & Panchagnula, M. V. 2019 Dynamical similarity and universality of drop size and velocity spectra in sprays. J. Fluid Mech. 860, 510543.CrossRefGoogle Scholar
Faeth, G. M. 1983 Evaporation and combustion of sprays. Prog. Energy Combust. Sci. 9, 176.CrossRefGoogle Scholar
George, W. K. 1989 The self-preservation of turbulent flows and its relation to initial conditions and coherent structures. In Advances in Turbulence (ed. George, W. K. & Arndt, R.), pp. 3973. Hemisphere.Google Scholar
Hetsroni, G. 1989 Particles-turbulence interaction. Intl J. Multiphase Flow 15, 735746.CrossRefGoogle Scholar
Hussein, H. J., Capp, S. P. & George, W. K. 1994 Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet. J. Fluid Mech. 258, 3175.CrossRefGoogle Scholar
Jedelsky, J., Maly, M., Pinto del Corral, N., Wigley, G., Janackova, L. & Jicha, M. 2018 Air–liquid interactions in a pressure-swirl spray. Intl J. Heat Mass Transfer 121, 788804.CrossRefGoogle Scholar
Johnson, T. A. & Patel, V. C. 1999 Flow past a sphere up to a Reynolds number of 300. J. Fluid Mech. 378, 1970.CrossRefGoogle Scholar
Karpetis, A. N. & Gomez, A. 1999 Self-similarity, momentum scaling and Reynolds stress in non-premixed turbulent spray flames. J. Fluid Mech. 397, 231258.CrossRefGoogle Scholar
Kessler, R. 2011 Engineered nanoparticles in consumer products: understanding a new ingredient. Environ. Health Perspectives 119, A120A125.CrossRefGoogle ScholarPubMed
Khattab, I. S., Bandarkar, F., Fakhree, M. A. A. & Jouyban, A. 2012 Density, viscosity, and surface tension of water + ethanol mixtures from 293 to 323k. Korean J. Chem. Engng 29, 812817.CrossRefGoogle Scholar
Kourmatzis, A., Pham, P. X. & Masri, A. R. 2015 Characterization of atomization and combustion in moderately dense turbulent spray flames. Combust. Flame 162, 978996.CrossRefGoogle Scholar
Lefebvre, A. H. & McDonell, V. G. 2017 Atomization and Sprays, 2nd edn. Taylor & Francis, CRC Press.CrossRefGoogle Scholar
Li, X., Chin, L. P., Tankin, R. S., Jackson, T., Stutrud, J. & Switzer, G. 1991 Comparison between experiments and predictions based on maximum entropy for sprays from a pressure atomizer. Combust. Flame 86, 7389.CrossRefGoogle Scholar
Li, X. & Shen, J. 1999 Experimental study of sprays from annular liquid jet breakup. J. Propul. Power 15, 103110.CrossRefGoogle Scholar
Li, X. & Tankin, R. S. 1992 On the prediction of droplet size and velocity distributions in sprays through maximum entropy principle. Part. Part. Syst. Charact. 9, 195201.CrossRefGoogle Scholar
Panchagnula, M. V. & Sojka, P. E. 1999 Spatial droplet velocity and size profiles in effervescent atomizer-produced sprays. Fuel 78, 729741.CrossRefGoogle Scholar
Peters, N.1997 Four lectures on turbulent combustion. Tech. Rep. RWTH Aachen.Google Scholar
Quadros, M. E. & Marr, L. C. 2010 Environmental and human health risks of aerosolized silver nanoparticles. J. Air Waste Manage. Assoc. 60, 770781.CrossRefGoogle ScholarPubMed
Quadros, M. E. & Marr, L. C. 2011 Silver nanoparticles and total aerosols emitted by nanotechnology-related consumer spray products. Environ. Sci. Technol. 45, 1071310719.CrossRefGoogle ScholarPubMed
Roisman, I. V. & Tropea, C. 2001 Flux measurements in sprays using phase doppler techniques. Atomiz. Sprays 11, 667699.Google Scholar
Russo, S. & Gomez, A. 2006 Physical characterization of laminar spray flames in the pressure range 0.1–0.9 MPa. Combust. Flame 145, 339356.CrossRefGoogle Scholar
Schlichting, H. 1933 Laminare Strahlausbreitung. Z. Angew. Math. Mech. 13, 260263.CrossRefGoogle Scholar
Schmidt, D. P., Nouar, I., Senecal, P. K., Rutland, C. J., Martin, J. K. & Reitz, R. D.1999 Pressure-swirl atomization in the near field. SAE Technical Paper 1999-01-0496.CrossRefGoogle Scholar
Shearer, A. J., Tamura, H. & Faeth, G. M. 1979 Evaluation of a locally homogeneous flow model of spray evaporation. J. Energy 3, 271278.Google Scholar
Sipperley, C. M., Bade, K. M. & Schick, R. J. 2018 Advanced processing for spray flux measurements using phase-Doppler interferometry. In Proc. ICLASS 2018, ICLASS 2018.Google Scholar
Soltani, M. R., Ghorbanian, K., Ashjaee, M. & Morad, M. R. 2005 Spray characteristics of a liquid–liquid coaxial swirl atomizer at different mass flow rates. Aerosp. Sci. Technol. 9, 592604.CrossRefGoogle Scholar
Tennekes, H. & Lumley, J. L. 1972 A First Course in Turbulence. MIT Press.Google Scholar
Tropea, C. 2011 Optical particle characterization in flows. Annu. Rev. Fluid Mech. 43, 399426.CrossRefGoogle Scholar
Wu, K.-J., Santavicca, D. A., Bracco, F. V. & Coghe, A. 1984 LDV measurements of drop velocity in diesel-type sprays. AIAA J. 22, 12631270.CrossRefGoogle Scholar
Wygnanski, I. & Fiedler, H. 1969 Some measurements in the self-preserving jet. J. Fluid Mech. 38, 577612.CrossRefGoogle Scholar